#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headeee@pmu.edu

Fax: +91- 4362 - 264660 Web: www. pmu.edu





## Board of Studies in Electrical and Electronics Engineering (Full Time)

## Curriculum (From I – VIII Semesters) & Syllabus (From I –IV Semesters)

(For the candidates admitted from 2018-19 onwards Based on Outcome Based Education)

## FOR

B.Tech. Degree Programme (Electrical and Electronics Engineering)

#### **UNIVERSITY VISION & MISSION**

| VISION  | To be                                                                          | a University of global dynamism with excellence in knowledge and          |  |  |  |  |
|---------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
|         | innovation ensuring social responsibility for creating an egalitarian society. |                                                                           |  |  |  |  |
|         |                                                                                | Offering well balanced Programmes with scholarly faculty and state-of-art |  |  |  |  |
|         | UM1                                                                            | facilities to impart high level of knowledge.                             |  |  |  |  |
|         |                                                                                | Providing student - centred education and foster their growth in critical |  |  |  |  |
|         | UM2                                                                            | thinking, creativity, entrepreneurship, problem solving and collaborative |  |  |  |  |
| MISSION |                                                                                | work.                                                                     |  |  |  |  |
|         | UM3                                                                            | Involving progressive and meaningful research with concern for            |  |  |  |  |
|         |                                                                                | sustainable development.                                                  |  |  |  |  |
|         | UM4                                                                            | Enabling the students to acquire the skills for global competencies.      |  |  |  |  |
|         |                                                                                | Inculcating Universal values, Self respect, Gender equality, Dignity and  |  |  |  |  |
|         | UM5                                                                            | Ethics.                                                                   |  |  |  |  |

#### **CORE VALUES**

- Student centric vocation
- Academic excellence
- Social Justice, equity, equality, diversity, empowerment, sustainability
- Skills and use of technology for global competency.
- Continual improvement
- Leadership qualities.
- Societal needs
- ➢ Learning, a life − long process
- ➤ Team work
- Entrepreneurship for men and women
- Rural development
- > Basic, Societal, and applied research on Energy, Environment, and Empowerment.

| VISION  | To become a leader in providing education, training and research in the field of    |                                                                            |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| VISION  | Electrical and Electronics Engineering to the aspiring graduates to be competent in |                                                                            |  |  |  |  |  |  |  |
|         | their pro                                                                           | fession and render best service to the society.                            |  |  |  |  |  |  |  |
|         |                                                                                     |                                                                            |  |  |  |  |  |  |  |
|         | DN/1                                                                                | To provide affordable, quality undergraduate and graduate education in the |  |  |  |  |  |  |  |
|         | DMI                                                                                 | areas of electrical engineering.                                           |  |  |  |  |  |  |  |
|         | DM2                                                                                 | To provide service to the profession, the university, the community, and   |  |  |  |  |  |  |  |
| MISSION |                                                                                     | society                                                                    |  |  |  |  |  |  |  |
|         | DM3                                                                                 | To conduct scholarly research at the frontiers of electrical engineering.  |  |  |  |  |  |  |  |
|         | DM4                                                                                 | To instill our graduates the need for life-long learning                   |  |  |  |  |  |  |  |
|         |                                                                                     | To promote personal and intellectual growth to reinforce a commitment to   |  |  |  |  |  |  |  |
|         | DM5                                                                                 | ethical and professional practices.                                        |  |  |  |  |  |  |  |

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# **TABLE: 1 MAPPING OF UNIVERSITY MISSION (UM) ANDDEPARTMENT MISSION (DM)**

|     | DM1 | DM2 | DM3 | DM4 | DM5 |
|-----|-----|-----|-----|-----|-----|
| UM1 | 3   | 1   | 1   | 0   | 0   |
| UM2 | 1   | 3   | 1   | 0   | 0   |
| UM3 | 0   | 2   | 3   | 2   | 0   |
| UM4 | 0   | 0   | 2   | 3   | 1   |
| UM5 | 0   | 1   | 0   | 1   | 3   |

 $0 - No \ relation \qquad 1 - Low \ relation \qquad 2 - Medium \ relation \qquad 3 - High \ Relation$ 

#### PROGRAMME EDUCATIONAL OBJECTIVES

Based on the mission of the department, the programme educational objectives is formulated as

| PEO1 | Our Graduates are professionally competent and apply the concept of mathematics,       |
|------|----------------------------------------------------------------------------------------|
|      | science and engineering to solve problem in Electrical and Electronics Engineering and |
|      | related fields.                                                                        |
| PEO2 | Our Graduates stay relevant in their chosen profession through lifelong learning and   |
|      | demonstrate social and ethical responsibility.                                         |

## TABLE: 2 MAPPING OF PROGRAM EDUCATIONAL OBJECTIVES (PEOs) WITH DEPARTMENT MISSION (DM)

|        | DM 1 | DM 2 | DM3      | DM 4   | DM 5 |
|--------|------|------|----------|--------|------|
| PEO 1  | 2    | 0    | 1        | 1      | 1    |
| PEO 2  | 1    | 3    | 1        | 3      | 3    |
|        | 3    | 3    | 2        | 4      | 4    |
| 1- Low |      | 2    | – Medium | 3-High |      |

#### **GRADUATE ATTRIBUTES (GAs)**

- 1. **Knowledge base for Engineering:** Demonstrate competence in mathematics, natural sciences, engineering fundamentals and specialized engineering knowledge appropriate to the programme.
- 2. Analytical Skills: Identify, formulate, analyze and solve diverse engineering problems.
- 3. **Design:** Solution for complicated open–ended engineering problems and design the components with appropriate standards to meet specified needs with proper attention to public health, safety, environment and society.
- 4. **Experimental Investigation:** Technical skills to conduct investigation, interpretation of observed data and provide solution for multifaceted problems.
- 5. **Modern Engineering tools usage**: Acquire, select, manipulate relevant techniques, resources and advanced engineering ICT tools to operate simple to complex engineering activities.
- 6. **Impact of engineering on society:** Provide a product / project for use by the public towards their health, welfare, safety and legal issues to serve the society effectively.
- 7. **Environment and Sustainability:** Design eco-friendly and sustainable products in demonstrating the technology development to meet present and future needs.
- 8. **High Ethical Standards:** Practice ethical codes and standards endorsed by professional engineers.
- 9. Leadership and team work: Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.

- 10. **Communication Skills:** Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.
- 11. **Project management and Finance:** Appropriate in incorporating finance and business practices including project, risk and change management in the practice of engineering by understanding their limitations.
- 12. Life-long learners: Update the technical needs in a challenging world in equipping themselves to maintain their competence.

#### PROGRAMME OUTCOMES (POs)

- 1. Apply the knowledge of mathematics, science, engineering fundamentals, to the solution of complex problems in Electrical and Electronics Engineering.
- Identify, formulate, research literature and analyze complex Electrical and Electronics Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design solutions for complex Electrical and Electronics Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions, related to Electrical and Electronics Engineering.
- 5. Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex Electrical and Electronics Engineering activities with an understanding of the limitations.
- 6. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 7. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### PROGRAM SPECIFIC OUTCOMES (PSOs)

|      | Ability to design and answer the problems in the field of Power Engineering by |
|------|--------------------------------------------------------------------------------|
| PSO1 | applying the knowledge acquired from Electrical Machines, Power Electronics,   |
|      | Electric Circuit Analysis, Power Systems & other related topics.               |
| PSO2 | Graduates will be able to develop and support Renewable based systems.         |

# TABLE 3: MAPPING OF PROGRAM EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAM OUTCOMES (POs)

|       | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| PEO 1 | 3   | 3   | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 2    | 2    | 1    |
| PEO 2 | 3   | 2   | 1   | 3   | 1   | 3   | 3   | 2   | 3   | 2    | 2    | 3    |

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

#### STRUCTURE OF B.TECH. ELECTRICAL AND ELECTRONICS ENGINEERING PROGRAMME

| Sl.No. | Category                                                                                                                              | Suggested by AICTE<br>Breakup of Credits | Implementation in<br>Curriculum 2018 |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|
| 1      | Humanities and Social Sciences including Management courses                                                                           | 12                                       | 12                                   |
| 2      | Basic Science courses                                                                                                                 | 26                                       | 23                                   |
| 3      | Engineering Science courses including<br>workshop, drawing, basics of<br>electrical/mechanical/computer etc                           | 20                                       | 16                                   |
| 4      | Professional core courses                                                                                                             | 53                                       | 57                                   |
| 5      | Professional Elective courses relevant<br>to chosen specialization/branch                                                             | 18                                       | 19                                   |
| 6      | Open subjects – Electives from other technical and /or emerging subjects                                                              | 18                                       | 18                                   |
| 7      | Project work, seminar and internship<br>in industry or elsewhere and minor<br>courses                                                 | 11                                       | 13                                   |
| 8      | Mandatory Courses [Environmental<br>Sciences, Induction training, Indian<br>Constitution, Essence of Indian<br>Traditional Knowledge] | (non-credit)                             | (non-credit)                         |
|        | Total                                                                                                                                 | 158                                      | 158                                  |

#### HUMANITIES & SOCIAL SCIENCES INCLUDING MANAGEMENT

| Sl.<br>No. | Course<br>Code | Course Title                           | Hrs. /Week<br>L: T: P | Credits | Preferred<br>Semester |
|------------|----------------|----------------------------------------|-----------------------|---------|-----------------------|
| 1          |                | English                                | 2:0:1                 | 3       | II                    |
| 2          |                | Industrial Economics and Foreign Trade | 3:0:0                 | 3       | V                     |
| 3          |                | E-Waste Management                     | 3:0:0                 | 3       | VI                    |
| 4          |                | Professional Ethics and Human Values   | 3:0:0                 | 3       | VII                   |
|            |                | 12                                     |                       |         |                       |

#### **BASIC SCIENCE COURSES**

| Sl. No. | Course<br>Code | Course Title                                                   | Hrs. /Week<br>L: T: P | Credit<br>s | Preferred<br>Semester |
|---------|----------------|----------------------------------------------------------------|-----------------------|-------------|-----------------------|
| 1       | XMA101         | Calculus And Linear Algebra                                    | 3:1:0                 | 4           | Ι                     |
| 2       | XAP104         | Applied Physics for Engineers                                  | 3:1:2                 | 6           | Ι                     |
| 3.      | XMA201         | Calculus, Ordinary Differential Equations and Complex Variable | 3:1:0                 | 4           | Π                     |
| 4.      | XAC204         | Applied Chemistry for Engineers                                | 3:1:1                 | 5           | Π                     |
| 5.      |                | Mathematics – III<br>(Probability and Statistics)              | 3:1:0                 | 4           | IV                    |
|         |                |                                                                | Total                 | 23          |                       |

#### **ENGINEERING SCIENCE COURSES**

| Sl.<br>No. | Course<br>Code | Course Title                                   | Hrs. /Week<br>L: T: P | Credits | Preferred<br>Semester |
|------------|----------------|------------------------------------------------|-----------------------|---------|-----------------------|
| 1          | XCP202         | Programming for Problem Solving                | 3:0:4                 | 5       | Π                     |
| 2          | XBE103         | Electrical and Electronics Engineering Systems | 3:1:1                 | 5       | Ι                     |
| 3          | XWP205         | Workshop Practices                             | 1:0:2                 | 3       | Π                     |
| 4          | XEG105         | Engineering Graphics                           | 2:0:1                 | 3       | Ι                     |
|            |                |                                                | Total                 | 16      |                       |

#### PROFESSIONAL CORE COURSES TRACKS-ELECTRICAL AND ELECTRONICS ENGINEERING [PEC-EE]

| Sl.<br>No | Course<br>Code | Course Title                                  | Hrs.<br>/Week<br>L: T: P | Credits | Semester   |
|-----------|----------------|-----------------------------------------------|--------------------------|---------|------------|
| 1         |                | Electrical Circuit Analysis                   | 3:1:0                    | 4       |            |
| 2         |                | Analog Electronics                            | 3:0:0                    | 3       |            |
| 3         |                | Electrical Machines-I                         | 3:0:0                    | 3       |            |
| 4         |                | Electromagnetic Fields                        | 3:1:0                    | 4       |            |
| 5         |                | Transmission and Distribution                 | 3:0:0                    | 3       | 111        |
| 6         |                | Electric Circuits Laboratory                  | 0:0:2                    | 1       |            |
| 7         |                | Analog Electronics Laboratory                 | 0:0:2                    | 1       |            |
| 8         |                | Electrical Machines-I Laboratory              | 0:0:2                    | 1       |            |
| 9         |                | Digital Electronics                           | 3:0:0                    | 3       |            |
| 10        |                | Power Electronics                             | 3:0:0                    | 3       |            |
| 11        |                | Electrical Machines-II                        | 3:0:0                    | 3       |            |
| 12        |                | Signals and System                            | 2:1:0                    | 3       | IV         |
| 13        |                | Digital Electronics Laboratory                | 0:0:2                    | 1       |            |
| 14        |                | Power Electronics Laboratory                  | 0:0:2                    | 1       |            |
| 15        |                | Electrical Machines-II Laboratory             | 0:0:2                    | 1       |            |
| 16        |                | Power Systems – I (Apparatus and Modelling)   | 3:0:0                    | 3       |            |
| 17        |                | Control Systems                               | 3:0:0                    | 3       |            |
| 18        |                | Microprocessors and microcontrollers          | 3:0:0                    | 3       | ₹7         |
| 19        |                | Power Systems – I Laboratory                  | 0:0:2                    | 1       | v          |
| 20        |                | Control Systems Laboratory                    | 0:0:2                    | 1       |            |
| 21        |                | Microprocessors & Microcontrollers Laboratory | 0:0:2                    | 1       |            |
| 22        |                | Power Systems –II (Operation and Control)     | 3:0:0                    | 3       |            |
| 23        |                | Power Systems – II Laboratory                 | 0:0:2                    | 1       | <b>57T</b> |
| 24        |                | Measurements and Instrumentation Laboratory   | 2:0:2                    | 3       | VI         |
| 25        |                | Electronics Design Laboratory                 | 1:0:4                    | 3       |            |
|           |                | 57                                            |                          |         |            |

#### PROFESSIONAL ELECTIVE COURSE TRACKS-ELECTRICAL AND ELECTRONICS ENGINEERING [PEC-EE]

| Sl.<br>No | Course<br>Code | Course Title                                  | Hrs.<br>/Week<br>L: T: P | Credits | Preferred<br>Semester |
|-----------|----------------|-----------------------------------------------|--------------------------|---------|-----------------------|
| 1         |                | Protection Switchgear                         | 3:0:0                    | 3       | V onwards             |
| 2         |                | Electrical Machine Design                     | 3:0:0                    | 3       | V onwards             |
| 3         |                | Embedded System                               | 3:0:0                    | 3       | V onwards             |
| 4         |                | Electrical safety, operations and Regulations | 3:0:0                    | 3       | V onwards             |
| 5         |                | Industrial Automation                         | 3:0:0                    | 3       | V onwards             |
| 6         |                | Power system Restructuring                    | 3:0:0                    | 3       | V onwards             |
| 7         |                | Line Commutated and Active Rectifiers         | 3:0:0                    | 3       | VI onwards            |
| 8         |                | Electrical Drives                             | 3:0:0                    | 3       | VI onwards            |
| 9         |                | High Voltage Engineering                      | 3:0:0                    | 3       | VI onwards            |
| 10        |                | Electrical Energy Conservation and Auditing   | 3:0:0                    | 3       | VI onwards            |
| 11        |                | Industrial Electrical Systems                 | 3:0:0                    | 3       | VI onwards            |
| 12        |                | Digital Control Systems                       | 3:0:0                    | 3       | VI onwards            |
| 13        |                | Digital Signal Processing                     | 3:0:0                    | 3       | VI onwards            |
| 14        |                | Computer Architecture                         | 3:0:0                    | 3       | VI onwards            |
| 15        |                | Electromagnetic Waves                         | 3:0:0                    | 3       | VI onwards            |
| 16        |                | Computational Electromagnetics                | 3:0:0                    | 3       | VI onwards            |
| 17        |                | Control Systems Design                        | 3:0:0                    | 3       | VI onwards            |
| 18        |                | Power System Dynamics and Control             | 3:0:0                    | 3       | VII onwards           |
| 19        |                | HVDC Transmission Systems                     | 3:0:0                    | 3       | VII onwards           |
| 20        |                | Power Quality and FACTS                       | 3:0:0                    | 3       | VII onwards           |
| 21        |                | Wind and Solar Energy Systems                 | 3:0:0                    | 3       | VII onwards           |
| 22        |                | Electrical and Hybrid Vehicles                | 3:0:0                    | 3       | VII onwards           |
| 23        |                | Power System Protection                       | 3:0:0                    | 3       | VII onwards           |
| 24        |                | Minor Course                                  | 3:0:0                    | 1       | VII onwards           |
| 25        |                | Advanced Electric Drives                      | 3:0:0                    | 3       | VIII onwards          |

#### OPEN ELECTIVE COURSES TRACKS-ELECTRICAL AND ELECTRONICS ENGINEERING [OEC-EE]

| SI.<br>No | Course<br>Code | Course Title                     | Credits |
|-----------|----------------|----------------------------------|---------|
| 01        |                | Electronic Devices               | 3       |
| 02        |                | Bio Medical Instrumentation      | 3       |
| 03        |                | Analog and Digital Communication | 3       |
| 04        |                | Computer Networks                | 3       |
| 05        |                | Eco Power Generation             | 3       |
| 07        |                | Energy Auditing and Management   | 3       |
| 08        |                | Wavelet Transforms               | 3       |
| 09        |                | Power Plant Engineering          | 3       |
| 10        |                | Communication Engineering        | 3       |
| 11        |                | Strength of Materials            | 3       |
| 12        |                | Fluid Machinery                  | 3       |
| 13        |                | Automobile Engineering           | 3       |
| 14        |                | Electrical Materials             | 3       |
| 15        |                | Modern Manufacturing Processes   | 3       |
| 16        |                | Internet of Things               | 3       |
| 17        |                | Big Data Analysis                | 3       |

#### **PROJECT WORK & INTERNSHIP IN INDUSTRY**

| Sl.<br>No. | Course<br>Code | Course Title                                                                  | Hrs. /Week<br>L: T: P | Credits | Preferred<br>Semester |
|------------|----------------|-------------------------------------------------------------------------------|-----------------------|---------|-----------------------|
| 1          |                | In-plant Training                                                             | 0:0:0                 | 1       | V                     |
| 2          |                | Project Phase-I                                                               | 0:0:6                 | 3       | VII                   |
| 3          |                | Summer Internship (45 to 60 days duration during summer vacation of III year) | 0:0:0                 | 1       | VII                   |
| 4          |                | Project Phase-II                                                              | 0:0:16                | 8       | VIII                  |
|            |                | Total                                                                         |                       | 13      |                       |

#### SEMESTER-WISE STRUCTURE OF CURRICULUM REGULATIONS – 2018

(Applicable to the students admitted from the Academic year 2018-19)

## CURRICULUM 2018

#### **SEMESTER I**

| Code No. | Course Title                                   | L  | Т | Р | ТСН | С  |
|----------|------------------------------------------------|----|---|---|-----|----|
| XMA101   | Calculus And Linear Algebra                    | 3  | 1 | 0 | 4   | 4  |
| XES102   | Environmental Science                          | 3  | 0 | 0 | 3   | 0  |
| XBE103   | Electrical And Electronics Engineering Systems | 3  | 1 | 1 | 7   | 5  |
| XAP104   | Applied Physics For Engineers                  | 3  | 1 | 2 | 7   | 6  |
| XEG105   | Engineering Graphics                           | 2  | 0 | 1 | 4   | 3  |
|          |                                                | 14 | 3 | 4 | 25  | 18 |

#### SEMESTER II

| Code No. | Course Title                                                      | L  | Т | Р | ТСН | С  |
|----------|-------------------------------------------------------------------|----|---|---|-----|----|
| XMA201   | Calculus, Ordinary Differential Equations and<br>Complex Variable | 3  | 1 | 0 | 5   | 4  |
| XCP202   | Programming for Problem Solving                                   | 3  | 0 | 2 | 7   | 5  |
| XGS203   | English                                                           | 2  | 0 | 1 | 4   | 3  |
| XAC204   | Applied Chemistry for Engineers                                   | 3  | 1 | 1 | 7   | 5  |
| XWP205   | Workshop Practices                                                | 1  | 0 | 2 | 6   | 3  |
|          |                                                                   | 12 | 2 | 8 | 29  | 20 |

#### SEMESTER III

| Code No. | Course Title                  | L  | Т | Р | TCH | С  |
|----------|-------------------------------|----|---|---|-----|----|
|          | Electrical Circuit Analysis   | 3  | 1 | 2 | 6   | 5  |
|          | Analog Electronics            | 3  | 0 | 2 | 5   | 4  |
|          | Electrical Machines-I         | 3  | 0 | 2 | 5   | 4  |
|          | Electromagnetic Fields        | 3  | 1 | 0 | 4   | 4  |
|          | Transmission and Distribution | 3  | 0 | 0 | 3   | 3  |
|          | •                             | 15 | 2 | 6 | 23  | 20 |

\*Pass / Fail course

#### SEMESTER IV

| Code No. | Course title                                                           | L  | Т | P | ТСН | С  |
|----------|------------------------------------------------------------------------|----|---|---|-----|----|
|          | Mathematics – III (Probability and Statistics)                         | 3  | 1 | 0 | 4   | 4  |
|          | Digital Electronics                                                    | 3  | 0 | 2 | 5   | 4  |
|          | Power Electronics                                                      | 3  | 0 | 2 | 5   | 4  |
|          | Electrical Machines-II                                                 | 3  | 0 | 2 | 5   | 4  |
|          | Signals and System                                                     | 2  | 1 | 0 | 3   | 3  |
|          | Mandatory Course (Extracurricular activities - NCC/NSS/YRC/RRC/Sports) | -  | - | - | -   | 0  |
|          |                                                                        | 14 | 2 | 6 | 22  | 19 |

#### SEMESTER V

| Code No. | Course Title                                                                         | L  | Т | Р | TCH | С  |
|----------|--------------------------------------------------------------------------------------|----|---|---|-----|----|
|          | Power Systems – I (Apparatus and Modelling)                                          | 3  | 0 | 2 | 5   | 4  |
|          | Control Systems                                                                      | 3  | 0 | 2 | 5   | 4  |
|          | Microprocessors and microcontrollers                                                 | 3  | 0 | 2 | 5   | 4  |
|          | Professional Elective-1                                                              | 3  | 0 | 0 | 3   | 3  |
|          | Open Elective -1                                                                     | 3  | 0 | 0 | 3   | 3  |
|          | Slot for Humanities or Management Course<br>(Industrial Economics and Foreign Trade) | 3  | 0 | 0 | 3   | 3  |
|          | In-plant Training                                                                    | -  | - | - | -   | 1  |
|          |                                                                                      | 18 | 0 | 6 | 24  | 22 |

#### SEMESTER VI

| Code No. | Course title                                                      | L  | Т | P | ТСН | С   |
|----------|-------------------------------------------------------------------|----|---|---|-----|-----|
|          | Power Systems –II (Operation and Control)                         | 3  | 0 | 2 | 5   | 4   |
|          | Professional Elective-2                                           | 3  | 0 | 0 | 3   | 3   |
|          | Professional Elective-3                                           | 3  | 0 | 0 | 3   | 3   |
|          | Open Elective -2                                                  | 3  | 0 | 0 | 3   | 3   |
|          | Slot for Humanities or Management Course (E-<br>Waste Management) | 3  | 0 | 0 | 3   | 3   |
|          | Disaster Management                                               | -  | I | - | -   | P/F |
|          | Measurements and Instrumentation Laboratory                       | 2  | 0 | 2 | 3   | 3   |
|          | Electronics Design Laboratory                                     | 1  | 0 | 4 | 5   | 3   |
|          |                                                                   | 18 | 0 | 8 | 25  | 22  |

#### SEMESTER VII

| Code No. | Course Title                                                                  | L  | Т | P | TCH | С  |
|----------|-------------------------------------------------------------------------------|----|---|---|-----|----|
|          | Professional Elective-4                                                       | 3  | 0 | 0 | 3   | 3  |
|          | Professional Elective-5                                                       | 3  | 0 | 0 | 3   | 3  |
|          | Open Elective -3                                                              | 3  | 0 | 0 | 3   | 3  |
|          | Open Elective -4                                                              | 3  | 0 | 0 | 3   | 3  |
|          | Professional Ethics and Human Values                                          | 3  | 0 | 0 | 3   | 3  |
|          | Minor Course                                                                  | 1  | 0 | 0 | 1   | 1  |
|          | Project Phase-I                                                               | 0  | 0 | 6 | 6   | 3  |
|          | Summer Internship (45 to 60 days duration during summer vacation of III year) | -  | _ | - | -   | 1  |
|          |                                                                               | 15 | 0 | 6 | 21  | 20 |

#### SEMESTER VIII

| Code No. | Course title            | L | Т | Р  | ТСН | С   |
|----------|-------------------------|---|---|----|-----|-----|
|          | Professional Elective-6 | 3 | 0 | 0  | 3   | 3   |
|          | Open Elective -5        | 3 | 0 | 0  | 3   | 3   |
|          | Open Elective -6        | 3 | 0 | 0  | 3   | 3   |
|          | Cyber security          | - | - | -  | -   | P/F |
|          | Project Phase-II        | 0 | 0 | 16 | 16  | 8   |
|          |                         | 9 | 0 | 16 | 25  | 17  |

#### MINOR (ONE CREDIT) COURSES:

| Code No. | Course Title             | L | Т | Р | С |
|----------|--------------------------|---|---|---|---|
|          | Electrical Safety        | 1 | 0 | 0 | 1 |
|          | Microgrid                | 1 | 0 | 0 | 1 |
|          | PLC Programming          | 1 | 0 | 0 | 1 |
|          | Energy Auditing          | 1 | 0 | 0 | 1 |
|          | Programming with Arduino | 1 | 0 | 0 | 1 |
|          | Online MOOC Course       | 1 | 0 | 0 | 1 |

#### **OVER ALL CREDITS = 158 CREDITS**

#### FLOW CHART FOR THE ENTIRE PROGRAMME





# **SYLLABUS 2018**

#### SEMESTER I

| COU                                                      | RSE CO                                                       | ODE     | COURSE NAME                                                              |                         | L           | Т        | Р      | С    |  |
|----------------------------------------------------------|--------------------------------------------------------------|---------|--------------------------------------------------------------------------|-------------------------|-------------|----------|--------|------|--|
| XMA101                                                   |                                                              |         |                                                                          |                         | 3           | 1        | 0      | 4    |  |
| С                                                        | Р                                                            | Α       | CALCULUS AND LINEAR ALGEBR                                               | RA                      | L           | Τ        | Р      | Η    |  |
| 3                                                        | 0.5                                                          | 0.5     |                                                                          |                         | 4           | 1        | 0      | 5    |  |
| PREF                                                     | REQUIS                                                       | SITE:   | Differentiation and Integration                                          |                         |             |          |        |      |  |
| COU                                                      | RSE OU                                                       | UTCO    | MES                                                                      |                         |             |          |        |      |  |
| Cours                                                    | se outco                                                     | mes:    |                                                                          | Domain                  | l           | Leve     | el     |      |  |
| CO1                                                      | CO1 Apply orthogonal transformation to reduce quadratic Cogn |         |                                                                          |                         | ve          | Rem      | embe   | ring |  |
| 000                                                      | form t                                                       | o cano  | onical forms.                                                            | a                       |             | Applying |        |      |  |
| CO2                                                      | Apply                                                        | powe    | er series to tests the convergence of the                                | Cognitive               |             | Applying |        |      |  |
| sequences and series. Half range Fourier sine and cosine |                                                              |         |                                                                          | Psychomotor Remembering |             |          | ring   |      |  |
|                                                          | series.                                                      |         |                                                                          |                         |             | Guic     | led    |      |  |
|                                                          |                                                              |         |                                                                          |                         |             | Resp     | onse   |      |  |
| CO3                                                      | Find t                                                       | the der | ivative of composite functions and implicit                              | Cognitiv                | Remembering |          |        |      |  |
|                                                          | functi                                                       | ions. E | culer's theorem and Jacobian                                             | Psychon                 | notor       | Guic     | led    |      |  |
|                                                          |                                                              |         |                                                                          |                         |             | Resp     | onse   |      |  |
| <b>CO4</b>                                               | Expla                                                        | in th   | e functions of two variables by Taylors                                  | Cognitiv                | ve          | Rem      | embe   | ring |  |
|                                                          | expans                                                       | sion,by | y finding maxima and minima with and                                     |                         |             | Und      | erstan | ding |  |
|                                                          | withou                                                       | it cons | straints using Lagrangian Method.                                        |                         |             |          |        |      |  |
|                                                          | Direct                                                       | ional c | onal derivatives, Gradient, Curl and Divergence. Affective Receiving     |                         |             |          |        |      |  |
|                                                          |                                                              |         |                                                                          |                         |             |          |        |      |  |
| CO5                                                      | Apply<br>Curva                                               | ture a  | rential and integral calculus to notions of<br>nd to improper integrals. | Cognitiv                | ve          | Applying |        |      |  |

| UNIT 1: MATRICES                                                                                           | 15            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| Linear Transformation - Eigen values and Eigen vectors -Properties of Eigen values and Eigen vectors       |               |  |  |  |  |
| - Cayley-Hamilton Theorem - Diagonalisation of Matrices - Real Matrices: Symmetry                          | etric - Skew- |  |  |  |  |
| Symmetric and Orthogonal Quadratic form - canonical form - Nature of Quadra                                | tic form and  |  |  |  |  |
| Transformation of Quadratic form to Canonical form (Orthogonal only).                                      |               |  |  |  |  |
| UNIT 2: SEQUENCES AND SERIES                                                                               | 15            |  |  |  |  |
| Sequences: Definition and examples-Series: Types and convergence- Series of positive te                    | erms – Tests  |  |  |  |  |
| of convergence: Comparison test, Integral test and D'Alembert's ratio test Fourier serie                   | s: Half range |  |  |  |  |
| sine and ine series- Parseval's Theorem.                                                                   |               |  |  |  |  |
| UNIT 3: MULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION                                                    | 15            |  |  |  |  |
| Limit and continuity –Partial differentiation – Total Derivative – Partial differentiation of              | f Composite   |  |  |  |  |
| Functions: Change of Variables – Differentiation of an Implicit Function - Euler's Theorem                 | em- Jacobian. |  |  |  |  |
| UNIT 4: MULTIVARIABLE CALCULUS: MAXIMA AND MINIMA AND                                                      | 15            |  |  |  |  |
| VECTOR CALCULUS                                                                                            | 15            |  |  |  |  |
| Taylor's theorem for function of Two variables- Maxima, Minima of functions of two va                      | riables: with |  |  |  |  |
| and without constraints - Lagrange's Method of Undetermined Multipliers - Directional                      | Derivatives - |  |  |  |  |
| Gradient, Divergence and Curl.                                                                             |               |  |  |  |  |
| UNIT 5: DIFFERENTIAL AND INTEGRAL CALCULUS 15                                                              |               |  |  |  |  |
| Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and        |               |  |  |  |  |
| their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. |               |  |  |  |  |
| LECTURE   TUTORIAL TOT                                                                                     | AL            |  |  |  |  |
|                                                                                                            |               |  |  |  |  |

| 60                                                                                                | 15                                                                                       |                                                 | 75                                  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|--|--|--|--|
| <b>Text Books</b>                                                                                 | S:                                                                                       |                                                 |                                     |  |  |  |  |
| 1. Ramana                                                                                         | 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th       |                                                 |                                     |  |  |  |  |
| Reprint, 20                                                                                       | 15. (Unit-1, Unit-3 and                                                                  | d Unit-4).                                      |                                     |  |  |  |  |
| 2. N.P. Bali                                                                                      | i and Manish Goyal, "A                                                                   | A text book of Engineering Mathem               | natics", Laxmi                      |  |  |  |  |
| Publication                                                                                       | s, Reprint, 2014. (Unit-                                                                 | -2).                                            |                                     |  |  |  |  |
| 3. B.S. Grev                                                                                      | wal, "Higher Engineerin                                                                  | ng Mathematics", Khanna Publish                 | ers, 40 <sup>th</sup> Edition,      |  |  |  |  |
| 2010. (Unit                                                                                       | t-5).                                                                                    |                                                 |                                     |  |  |  |  |
| Reference                                                                                         | Books:                                                                                   |                                                 |                                     |  |  |  |  |
| 1. G.B. Tho                                                                                       | omas and R.L. Finney, "                                                                  | "Calculus and Analytic geometry"                | , 9 <sup>th</sup> Edition, Pearson, |  |  |  |  |
| Reprint, 20                                                                                       | 02.                                                                                      |                                                 |                                     |  |  |  |  |
| 2. Veeraraja                                                                                      | 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, |                                                 |                                     |  |  |  |  |
| 2008.                                                                                             |                                                                                          |                                                 |                                     |  |  |  |  |
| 3. D. Poole, "Linear Algebra: A Modern Introduction", 2 <sup>nd</sup> Edition, Brooks/Cole, 2005. |                                                                                          |                                                 |                                     |  |  |  |  |
| 4. Erwin kr                                                                                       | eyszig, "Advanced Eng                                                                    | gineering Mathematics", 9 <sup>th</sup> Edition | n, John Wiley & Sons,               |  |  |  |  |

#### **COs Versus GAs Mapping**

#### Table 1: Mapping of with :

2006.

|                 | GA1 | GA2 | GA3 | GA4 | GA5 | GA6 | GA7 | GA8 | GA9 | GA10 | GA11 | GA12 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO 1            | 3   | 2   |     |     | 2   |     |     |     |     | 1    |      | 2    |
| CO 2            | 3   | 2   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 3            | 3   | 2   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 4            | 3   | 2   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 5            | 3   | 2   |     |     | 1   |     |     |     |     | 1    |      | 2    |
|                 | 15  | 10  | 0   | 0   | 3   | 0   | 0   | 0   | 0   | 5    | 0    | 7    |
| Scaled<br>Value | 3   | 2   |     |     | 1   |     |     |     |     | 1    |      |      |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 30$  - No Relation,

1 - Low Relation, 2- Medium Relation, 3- High Relation

| COUI                      | RSE CODE       | COURSE NAME                                      | L      | Т         | SS    | Р          | С     |  |
|---------------------------|----------------|--------------------------------------------------|--------|-----------|-------|------------|-------|--|
| Σ                         | XES102         |                                                  | 0      | 0         | 0     | 0          |       |  |
|                           | C:P:A          | ENVIRONMENTAL SCIENCES                           | L      | Т         | SS    | Р          | Η     |  |
| 1.4                       | : 0.3 : 0.3    |                                                  | 3      | 0         | 0     | 0          | 3     |  |
| COUI                      | RSE OUTCO      | MES                                              |        | DOM       | IAIN  | LEVE       | EL    |  |
| COL                       | Describe th    | e significance of natural resources and ex       | plain  | Cogni     | itive | Reme       | mber  |  |
| COI                       | anthropogeni   | c impacts.                                       |        |           |       | Understand |       |  |
| CO2                       | Illustrate the | e significance of ecosystem, biodiversity and na | atural | Cognitive |       | Understand |       |  |
| 02                        | geo bio chem   | nical cycles for maintaining ecological balance. |        |           |       |            |       |  |
| CO3                       | Identify the   | facts, consequences, preventive measures of a    | major  | Cognitive |       | Remember   |       |  |
| 005                       | pollutions an  | nd recognize the disaster phenomenon             |        | Affective |       | Receive    |       |  |
| COA                       | Explain the    | socio-economic, policy dynamics and practic      | e the  | Cogni     | itive | Under      | stand |  |
| 004                       | control meas   | ures of global issues for sustainable developme  | ent.   |           |       | Apply      |       |  |
|                           | rious          | Cogni                                            | itive  | Under     | stand |            |       |  |
| CO5                       |                |                                                  | Analy  | sis       |       |            |       |  |
| environmental protection. |                |                                                  |        |           |       |            |       |  |
|                           |                |                                                  |        |           |       |            |       |  |

UNIT - I INTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY12Definition, scope and importance – Need for public awareness – Forest resources: Use, deforestation,<br/>case studies. – Water resources: Use and over-utilization of surface and ground water, dams-benefits<br/>and problems – Mineral resources: Uses, environmental effects of mining, case studies-iron<br/>mining(Goa), bauxite mining(Odisha) – Food resources: effects of modern agriculture, fertilizer-<br/>pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs,<br/>renewable and non-renewable energy sources, use of alternate energy sources, case studies – Land<br/>resources: Land as a resource, land degradation – Role of an individual in conservation of natural<br/>resources – Equitable use of resources for sustainable lifestyles.12

UNIT – II EYSTEMS AND BIODIVERSITY

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Biogeochemical cycles – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

**UNIT – III ENVIRONMENTAL POLLUTION** 

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management– Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT -IV SOCIAL ISSUES AND THE ENVIRONMENT

Rain water harvesting – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act–Wildlife Protection Act–Forest Conservation Act – Public awareness.

#### UNIT -V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations - Population explosion- Environment and human health -

Board of studies in Electrical and Electronics Engineering (With effect from 26.6.2018 onwards) Page 21

10

6

10

7

HIV / AIDS- Role of Information Technology in Environment and human health.

|         | LECTURE                                                                      | TUTORIAL              | PRACTICAL                   | SELF STUDY          | TOTAL           |  |  |  |
|---------|------------------------------------------------------------------------------|-----------------------|-----------------------------|---------------------|-----------------|--|--|--|
| HOURS   | 45                                                                           | 0                     | 0                           | 0                   | 45              |  |  |  |
| TEXT    | <b>FEXT BOOKS</b>                                                            |                       |                             |                     |                 |  |  |  |
| 1.      | Miller T.G. Jr., Environ                                                     | nental Science, Wa    | adsworth Publishir          | ng Co, USA, 2000.   |                 |  |  |  |
| 1.      | Townsend C., Harper J a                                                      | nd Michael Begon,     | Essentials of Eco           | ology, Blackwell S  | cience, UK,     |  |  |  |
|         | 2003                                                                         | -                     |                             |                     |                 |  |  |  |
| 2.      | Trivedi R.K and P.K.Goe                                                      | el, Introduction to A | Air pollution, Tech         | no Science Public   | ations, India,  |  |  |  |
|         | 2003.                                                                        |                       | -                           |                     |                 |  |  |  |
| 3.      | Disaster mitigation, Prepare                                                 | edness, Recovery and  | d Response, SBS Pu          | blishers & Distribu | utors Pvt. Ltd, |  |  |  |
|         | New Delhi, 2006.                                                             |                       |                             |                     |                 |  |  |  |
| 4.      | Introduction to Internationa                                                 | l disaster manageme   | ent, Butterworth Hei        | nemann, 2006.       |                 |  |  |  |
| 5.      | Gilbert M.Masters, Intro                                                     | duction to Environ    | mental Engineerin           | ig and Science, Pe  | arson Education |  |  |  |
|         | Pvt., Ltd., Second Edition                                                   | n, New Delhi, 2004    | ł.                          |                     |                 |  |  |  |
| REFE    | CRENCE BOOKS                                                                 |                       |                             |                     |                 |  |  |  |
| 1.      | Trivedi R.K., Handbook                                                       | of Environmental I    | Laws, Rules, Guid           | elines, Compliance  | es and          |  |  |  |
| -       | Standards, Vol. I and II,                                                    | Enviro Media, Indi    | a, 2009.                    |                     |                 |  |  |  |
| 2.      | Cunningham, W.P.Coope                                                        | er, T.H.Gorhani, Ei   | nvironmental Ency           | clopedia, Jaico Pu  | ıbl., House,    |  |  |  |
| -       | Mumbai, 2001.                                                                |                       |                             |                     |                 |  |  |  |
| 3.      | S.K.Dhameja, Environm                                                        | ental Engineering     | and Management,             | S.K.Kataria and S   | ons, New Delhi, |  |  |  |
|         | 2012.                                                                        |                       |                             |                     |                 |  |  |  |
| 4.      | Sahni, Disaster Risk Red                                                     | uction in South As    | 1a, PHI Learning,           | New Delh1, 2003.    |                 |  |  |  |
| 5.      | Sundar, Disaster Manage                                                      | ment, Sarup & Sor     | ns, New Delhi, 200          | )/.                 |                 |  |  |  |
| 6.      | G.K.Ghosh, Disaster Mana                                                     | gement, A.P.H.Publi   | shers, New Delhi, 2         | 006.                |                 |  |  |  |
| E RE    | SOURCES                                                                      | /1/11                 | 0.1 1 10506                 |                     |                 |  |  |  |
| 1.      | http://www.e-booksdirec                                                      | tory.com/details.ph   | $\frac{10526}{10526}$       | . 1.0. 1            |                 |  |  |  |
| 2.      | https://www.free-ebooks                                                      | net/ebook/Introduc    | ction-to-Environm           | ental-Science       |                 |  |  |  |
| 3.      | https://www.free-ebooks                                                      | net/ebook/what-is     | -Biodiversity               |                     |                 |  |  |  |
| 4.      | https://www.learner.org/o                                                    | courses/envsci/unit   | /unit_vis.php?unit          | <u>=4</u>           |                 |  |  |  |
| 5.      | http://bookboon.com/en/j                                                     | pollution-preventio   | n-and-control-ebo           | <u>ok</u>           |                 |  |  |  |
| 6.<br>7 | http://www.e-booksdirec                                                      | tory.com/details.pr   | $\frac{10?ebook=8557}{21}$  |                     |                 |  |  |  |
| /.      | http://www.e-booksdirec                                                      | tory.com/details.pr   | $\frac{10?ebook=6804}{1}$   |                     |                 |  |  |  |
| 8.      | http://bookboon.com/en/a                                                     | tmospheric-pollut     | <u>10n-ebook</u>            |                     |                 |  |  |  |
| 9.      | <u>http://www.e-booksdirectory.com/details.php?ebook=3749</u>                |                       |                             |                     |                 |  |  |  |
| 10      | ). <u>http://www.e-booksdirectory.com/details.php?ebook=2604</u>             |                       |                             |                     |                 |  |  |  |
| 11      | http://www.e-dooksdirec                                                      | tory.com/details.pr   | $\frac{102000K=2110}{1026}$ |                     |                 |  |  |  |
| 12      | http://www.e-doodsdirec                                                      | ory.com/details.pr    | $\frac{10200}{1020}$        | 1 Saianaa           |                 |  |  |  |
| 15      | 13. <u>http://www.faadooengineers.com/threads//894-Environmental-Science</u> |                       |                             |                     |                 |  |  |  |

| COURSE  | CODE COURSE NAME                                        | COURSE NAME                                       |             |   |            | Р          | C  |  |
|---------|---------------------------------------------------------|---------------------------------------------------|-------------|---|------------|------------|----|--|
| XBE     | 103 ELECTRICAL AND ELECTRON<br>ENGINEERING SYSTEMS      | ELECTRICAL AND ELECTRONICS<br>ENGINEERING SYSTEMS |             |   |            | 1          | 5  |  |
| PREREQU | JISITES PHYSICS                                         |                                                   | L           | Т |            | Р          | Η  |  |
| C:P     | A                                                       |                                                   | 2           | 2 |            | 2          | 7  |  |
| 3:1:    | 0                                                       |                                                   | 3           | 2 |            | 2          | /  |  |
| COURSE  | OUTCOMES                                                | DOM                                               | <b>IAIN</b> |   | LI         | EVEL       |    |  |
|         | Define and Relate the fundamentals of electric          | l Cogn                                            | itive       |   | Re         | emembe     | er |  |
| CO1     | parameters and build and explain AC, DC circui          | S                                                 | C           |   | Understand |            | nd |  |
|         | by Using measuring devices                              | Psyc                                              | Psychomotor |   | Mechanism  |            |    |  |
|         |                                                         |                                                   |             |   | set        |            |    |  |
| CO2     | Define and Explain the operation of DC and A            | C   Cogn                                          | Cognitive   |   |            | Remember   |    |  |
| 02      | machines.                                               |                                                   |             |   |            | Understand |    |  |
|         | Recall and Illustrate various semiconducted             | or Cogn                                           | Cognitive   |   |            | Remember   |    |  |
| CO3     | devices and their applications and displays the input   | ıt                                                |             |   | Understand |            | nd |  |
| 0.05    | output characteristics of basic semiconducted           | or Psycl                                          | Psychomotor |   | M          | echanis    | m  |  |
|         | devices.                                                |                                                   |             |   |            |            |    |  |
|         | Relate and Explain the number systems and logic         |                                                   |             |   | Re         | emembe     | er |  |
| CO4     | gates. <b>Construc</b> t the different digital circuit. |                                                   |             |   | Understand |            | nd |  |
|         |                                                         |                                                   | Psychomotor |   | Or         | riginatio  | on |  |
| C05     | Label and Outline the different types of                | of Cogn                                           | itive       |   | Re         | emembe     | er |  |
| 0.05    | microprocessors and their applications.                 |                                                   |             |   | Ur         | nderstar   | nd |  |

#### UNIT I- FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS 9+9+12

Fundamentals of DC– Ohm's Law – Kirchoff's Laws - Sources - Voltage and Current relations – Star/Delta Transformation - Fundamentals of AC – Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities - Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

#### LIST OF EXPERIMENTS

1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.

- 2. Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- 3. Verification of AC Voltage, Current and Power in Series and Parallel connection.
- 4. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.
- 5. Fluorescent lamp connection with choke.

6. Staircase Wiring.

#### UNIT II – ELECTRICAL MACHINES

9 + 6+0

Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single Phase Induction Motor and Three Phase Induction Motor-Construction, Principle of Operation of Single Phase Transformer, Three phase transformers, Auto transformer.

#### **UNIT III – SEMICONDUCTOR DEVICES**

9 + 3+8

9 + 6 + 10

**9+6+0** 

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications.

#### LIST OF EXPERIMENTS

5. Forward and Reverse bias characteristics of PN junction diode.

6. Forward and Reverse bias characteristics of zener diode.

7. Input and Output Characteristics of NPN transistor.

#### **UNIT IV – DIGITAL ELECTRONICS**

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.

- 8. Construction and verification of simple logic gates.
- 9. Construction and verification of adders.

10. Construction and verification of subtractor.

#### UNIT V – MICROPROCESSORS

Architecture, 8085, 8086 - Interfacing Basics: Data transfer concepts – Simple Programming concepts

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LECTURE            | TUTORIAL                          | PRACTICAL                         | TOTAL                       |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-----------------------------------|-----------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                 | 30                                | 30                                | 105                         |  |  |  |  |  |
| TEXT BOOKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEXT BOOKS         |                                   |                                   |                             |  |  |  |  |  |
| 1. Metha V.K., 2008.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Principles of Ele  | ctronics. Chand and               | d Company.                        |                             |  |  |  |  |  |
| 2. Malvino, A. P., 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06. Electronics Pi | rinciples. 7 <sup>th</sup> ed. Ne | w Delhi: Tata Mc                  | cGraw-Hill.                 |  |  |  |  |  |
| 3. Rajakamal, 2007.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Digital System-Pr  | inciple & Design. 2               | 2 <sup>nd</sup> ed. Pearson educa | ation.                      |  |  |  |  |  |
| 4. Morris Mano, 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9. Digital Design. | Prentice Hall of In               | dia.                              |                             |  |  |  |  |  |
| 5. Ramesh, S. Gaonk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ar, 2000. Micropr  | ocessor Architectu                | re, Programming and               | t its Applications with the |  |  |  |  |  |
| 8085. 4 <sup>th</sup> ed. India:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Penram Internatio  | onal Publications.                |                                   |                             |  |  |  |  |  |
| <ul> <li>REFERENCE BOOKS:</li> <li>1. Corton,H.,2004. Electrical Technology. CBS Publishers &amp; Distributors.</li> <li>2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.</li> <li>3. Jacob Millman and Christos, C. Halkias, 1967. Electronics Devices.New Delhi: McGraw-Hill.</li> <li>4. Millman, J. andHalkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems.<br/>Tokyo: McGraw-Hill, Kogakusha Ltd.</li> <li>5. Mohammed Rafiquzzaman, 1999. Microprocessors - Theory and Applications: Intel and Motorola.<br/>Prentice Hall International</li> </ul> |                    |                                   |                                   |                             |  |  |  |  |  |
| E-REFERENCES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                   |                                   |                             |  |  |  |  |  |
| 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                   |                                   |                             |  |  |  |  |  |
| 2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                   |                                   |                             |  |  |  |  |  |
| 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura , IIT Madras.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                   |                                   |                             |  |  |  |  |  |
| 4. Dr.LUmanand, ht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p://www.nptelvic   | leos.in/2012/11/bas               | sic-electrical-technol            | ogy.html, IISC Bangalore.   |  |  |  |  |  |

| COURS                                    | SE CODE                                                         | COURSE NAME                                            | L             | Т      | Р           | С           |  |
|------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|---------------|--------|-------------|-------------|--|
| XA                                       | P104                                                            | APPLIED PHYSICS FOR ENGINEERS                          | 3             | 1      | 2           | 6           |  |
| C:                                       | P:A                                                             | 2.8:0.8:0.4                                            | L             | Т      | Р           | Н           |  |
| PRERE                                    | PREREQUISITE: Basic Physics in HSC level                        |                                                        |               |        | 3           | 7           |  |
| COURS                                    | E OUTCON                                                        | MES                                                    | Doi           | main   | Le          | evel        |  |
| CO1                                      | <b>Identify</b> t                                               | he basics of mechanics, explain the principles of      | Cognit        | ive    | Reme        | ember,      |  |
|                                          | elasticity                                                      | and <b>determine</b> its significance in engineering   |               |        | Unde        | erstand     |  |
|                                          | systems an                                                      | d technological advances.                              | Psycho        | omotor | Mech        | nanism      |  |
| CO2                                      | Illustrate                                                      | the laws of electrostatics, magneto-statics and        | and Cognitive |        |             | Remember,   |  |
|                                          | electromag                                                      | gnetic induction; use and locate basic applications of |               |        | Analyze,    |             |  |
| electromagnetic induction to technology. |                                                                 |                                                        | Psychomotor   |        | Mechanism   |             |  |
|                                          |                                                                 |                                                        | Affecti       | ive    | Respo       | Respond     |  |
| CO3                                      | Understar                                                       | nd the fundamental phenomena in optics by              | Cognitive     |        | Understand, |             |  |
|                                          | measurem                                                        | ent and <b>describe</b> the working principle and      |               |        | Apply       |             |  |
|                                          | application                                                     | n of various lasers and fibre optics.                  | Psycho        | omotor | Mech        | Mechanism   |  |
|                                          |                                                                 |                                                        | Affecti       | ive    | Recei       | ive         |  |
| CO4                                      | Analyse e                                                       | energy bands in solids, discuss and use physics        | Cognit        | ive    | Unde        | rstand,     |  |
|                                          | principles of latest technology using semiconductor devices.    |                                                        |               |        | Analy       | yze         |  |
|                                          |                                                                 |                                                        | Psychomotor   |        |             | nanism      |  |
|                                          |                                                                 |                                                        | Affecti       | ive    | Recei       | ive         |  |
| CO5                                      | CO5 Develop Knowledge on particle duality and solve Schrodinger |                                                        |               | ive    | Unde        | Understand, |  |
|                                          | equation for simple potential.                                  |                                                        |               | 110    | Apply       | у           |  |

| UNIT - I MECHANICS OF SOLIDS                                                                            | 9+3+9                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|
| Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum -                   | torque - law            |  |  |  |  |
| of conservation of energy and momentum - Friction.                                                      |                         |  |  |  |  |
| Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic           | : modulus -             |  |  |  |  |
| Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending               | g of beams -            |  |  |  |  |
| Experimental determination of Young's modulus: Uniform bending and non-uniform bending.                 |                         |  |  |  |  |
| UNIT -II ELECTROMAGNETIC THEORY                                                                         | 9+3+3                   |  |  |  |  |
| Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarisation         | i, Dielectric           |  |  |  |  |
| constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Far                | raday's law;            |  |  |  |  |
| Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - ex             | pression for            |  |  |  |  |
| plane, circularly and elliptically polarized light - quarter and half wave plates - production and      | nd detection            |  |  |  |  |
| of plane, circularly and elliptically polarized light.                                                  |                         |  |  |  |  |
| UNIT –III OPTICS, LASERS AND FIBRE OPTICS                                                               | 9+3+12                  |  |  |  |  |
| Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and            | d dispersive            |  |  |  |  |
| power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.                | -                       |  |  |  |  |
| LASER: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - (                   | CO <sub>2</sub> laser – |  |  |  |  |
| Applications Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and |                         |  |  |  |  |
| acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram)            | •                       |  |  |  |  |
|                                                                                                         |                         |  |  |  |  |
| Board of studies in Electrical and Electronics Engineering (With effect from 26.6.2018 onwards)         | Page 27                 |  |  |  |  |

| UNIT –IV SEMICONDUCTOR PHYSICS |  |
|--------------------------------|--|
|--------------------------------|--|

9+3+6

**Semiconductors**: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

**Diodes and Transistors**: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

#### **UNIT -V QUANTUM PHYSICS**

9+3+0

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

#### **TEXT BOOKS**

- 1. Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.
- 2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010.

#### **REFERENCE BOOKS**

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., " Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.

4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

#### **E RESOURCES**

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

#### LABORATORY

- 1. Torsional Pendulum determination of moment of inertia and rigidity modulus of the given material of the wire.
- 2. Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 3. Non-Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 4. Meter Bridge Determination of specific resistance of the material of the wire.
- 5. Spectrometer Determination of dispersive power of the give prism.
- 6. Spectrometer Determination of wavelength of various colours in Hg source using grating.
- 7. Air wedge Determination of thickness of a given thin wire.
- 8. Laser Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
- 9. Post office Box Determination of band gap of a given semiconductor.
- 10. PN Junction Diode Determination of V-I characteristics of the given diode.

#### **REFERENCE BOOKS**

- 1. Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency (P) Ltd, 2008.
- 2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.

| 3. Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012. |         |          |           |             |  |  |  |
|-----------------------------------------------------------------------------------------|---------|----------|-----------|-------------|--|--|--|
|                                                                                         | LECTURE | TUTORIAL | PRACTICAL | TOTAL HOURS |  |  |  |
| Hours 45 15 30 90                                                                       |         |          |           |             |  |  |  |

| Soci AnnueXEG105201CPAENGINEERING GRAPHICS11I.7510.25ENGINEERING GRAPHICS1TPI.7510.25IITPPREREQUISITE: NILCourse outcomes:DomainLevelCO1Apply the national and international<br>standards, construct and practice various<br>curvesDomainLevelC01Apply the national and international<br>standards, construct and practice various<br>orthographic projections of points, straight<br>lines and planes.DomainLevelC02Interpret, construct and practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaC03Interpret, Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex Over<br>Psychomotor<br>and<br>AffectiveC04Interpret, Sketch and Practice isometric<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Psychomotor<br>and<br>AffectiveC04Construct sketch and practice isometric<br>and perspective views of simple and<br>and perspective views of simple and<br>and perspective views of simple and<br>prespective views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S    | UR  | CODE           | SUB                           | NAME      | E.                      |                             | L     | Т     | Р       | С        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----------------|-------------------------------|-----------|-------------------------|-----------------------------|-------|-------|---------|----------|--|
| CPAENGINEERING GRAPHICSLTP1.7510.25PREREQUISITE: NILCourse outcomes:COURSE OUTCOMES:Course outcomes:DomainLevelApply the national and international standards, construct and practice various curvesCognitive, Psychomotor and AffectiveCO1Interpret, construct and practice projections of points, straight lines and planes.Cognitive Psychomotor and AffectiveCO3Construct Sketch and Practice projection of solids in various positions and true shape of sectioned solids.Cognitive Psychomotor and AffectiveCO4Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids.Construct sketch and practice isometric and AffectiveCO4Construct sketch and practice isometric and truncated solids, intersection of solids.Cognitive Psychomotor and AffectiveCO4Interpret, Sketch and practice isometric and truncated solids, intersection of solids.Cognitive Psychomotor and AffectiveCO4Construct sketch and practice isometric and truncated solids, intersection of solids.Cognitive Psychomotor and AffectiveCO5Construct sketch and practice isometric and perspective views of simple and truncated colidsApplying, Complex Over Response and Responds to PhenomenaCO5Construct sketch and practice isometric and perspective views of simple and truncated colidsCognitive Psychomotor Response and Responds to Phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | XE  | G105           |                               |           |                         |                             | 2     | 0     | 1       | 3        |  |
| 1.7510.25202PREREQUISITE: NILCourse outcomes:DomainLevelApply the national and international<br>standards, construct and practice various<br>curvesDomainLevelCO1Apply the national and international<br>standards, construct and practice various<br>orthographic projections of points, straight<br>lines and planes.DomainLevelCO2Interpret, construct and practice<br>orthographic projections of points, straight<br>lines and planes.Precedent of the precedent of the precedent of the precedent of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Understanding, Complex Over<br>Response and Responds to<br>PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>and perspective views of simple and<br>and perspective views of simple and<br>and perspective views of simple and<br>product of solidsApplying, Complex Over<br>Response and Responds to<br>Psychomotor<br>and<br>Precement of Response and Responds to<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С    | P   | Α              | ENGINEERI                     | NG GR     | APHICS                  |                             | L     | Т     | Р       | H        |  |
| PREREQUISITE: NIL         Course outcomes:       Domain       Level         CO1       Apply the national and international standards, construct and practice various curves       Domain       Level         CO1       Apply the national and international standards, construct and practice various curves       Domain       Level         CO2       Interpret, construct and practice orthographic projections of points, straight lines and planes.       Cognitive projection of solids in various positions and true shape of sectioned solids.       Cognitive projection and Affective       Applying, Complex Over Response and Responds to Phenomena Affective         CO3       Construct Sketch and Practice projection of solids in various positions and true shape of sectioned solids.       Cognitive and Affective       Applying, Complex Over Response and Responds to Phenomena Affective         CO4       Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids.       Mathematication of solids.       Understanding, Complex Over Response and Responds to Phenomena Affective         CO4       Construct sketch and practice isometric and practice isometric and perspective views of simple and truncated solids, intersection of solids.       Applying, Complex Over Response and Responds to Phenomena Affective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.75 | 1   | 0.25           |                               |           |                         |                             | 2     | 0     | 2       | 4        |  |
| COURSE OUTCOMES:Course outcomes:DomainLevelApply the national and international<br>standards, construct and practice various<br>curvesDomainLevelCO1Apply the national and international<br>standards, construct and practice various<br>curvesCognitive,<br>Psychomotor<br>and<br>AffectiveApplying, Guided<br>response and Responds to<br>PhenomenaCO2Interpret, construct and practice<br>orthographic projections of points, straight<br>lines and planes.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Mechanis<br>and Responds to Phenom<br>and<br>AffectiveCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Understanding, Complex<br>Overt Response and Responds to<br>PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solids, intersection of solids.Applying, Complex Over<br>Response and Responds to<br>PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsApplying, Complex Over<br>Response and Responds to<br>Poschomotor<br>and<br>Affective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRE  | RE( | QUISITE: N     | NIL                           |           |                         |                             |       |       |         |          |  |
| Course outcomes:DomainLevelCO1Apply the national and international<br>standards, construct and practice various<br>curvesCognitive,<br>Psychomotor<br>andApplying, Guided<br>response and Responds to<br>PhenomenaCO2Interpret, construct and practice<br>orthographic projections of points, straight<br>lines and planes.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Mechanis<br>and Responds to PhenomenaCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Responds to<br>PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and<br>and perspective views of simple and<br>trumpated colideCognitive<br>PhenomenaApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>trumpated colideCognitive<br>PhenomenaApplying, Complex Over<br>Response and Responds to<br>Phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COU  | JRS | E OUTCON       | MES:                          |           |                         |                             |       |       |         |          |  |
| CO1Apply the national and international standards, construct and practice various curvesCognitive, Psychomotor and Psychomotor and PhenomenaApplying, Guided response and Responds to PhenomenaCO2Interpret, construct and practice orthographic projections of points, straight lines and planes.Interpret, construct and Practice projection of solids in various positions and true shape of sectioned solids.Cognitive Psychomotor and AffectiveUnderstanding, Mechanis and Responds to PhenomenaCO3Construct Sketch and Practice projection of solids in various positions and true shape of sectioned solids.Cognitive Psychomotor and AffectiveApplying, Complex Over Response and Responds to PhenomenaCO4Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids.Cognitive Psychomotor and AffectiveUnderstanding, Complex Over Psychomotor and AffectiveCO5Construct sketch and practice isometric and perspective views of simple and truncated solids, intersection of solids.Psychomotor and AffectiveApplying, Complex Over Response and Responds to PhenomenaCO5Construct sketch and practice isometric and perspective views of simple and truncated solids, intersection of solids.Cognitive Psychomotor and AffectivePhenomenaCO5Construct sketch and practice isometric and perspective views of simple and truncated solids.Complex over Response and Responds to Phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     | Cou            | irse outcomes:                |           | Domain                  |                             |       | Le    | evel    |          |  |
| CO1standards, construct and practice various<br>curvesPsychomotor<br>and<br>Affectiveresponse and Responds to<br>PhenomenaCO2Interpret, construct and practice<br>orthographic projections of points, straight<br>lines and planes.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Mechanis<br>and Responds to Phenom<br>and<br>AffectiveCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and                                                                                                                                                                                                                                         |      |     | Apply the      | national and international    | tional    | Cognitive,              | Appl                        | lying | , Gui | ded     |          |  |
| CO1curvesand<br>AffectivePhenomenaCO2Interpret, construct and practice<br>orthographic projections of points, straight<br>lines and planes.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Mechanis<br>and Responds to Phenom<br>and<br>AffectiveCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and<br>trumented solids.Cognitive<br>PsychomotorApplying, Complex Over<br>Response and Resp<br>overt Response and Resp<br>overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>trumented solids.Cognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO   | 1   | standards,     | construct and practice va     | arious    | Psychomotor             | respo                       | onse  | and F | Respor  | nds to   |  |
| CO2Interpret, construct and practice<br>orthographic projections of points, straight<br>lines and planes.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Mechanis<br>and Responds to Phenom<br>and<br>AffectiveCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>PsychomotorUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>PsychomotorCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsPhenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO   | 1   | curves         |                               |           | and                     | Phen                        | ome   | na    |         |          |  |
| CO2Interpret, construct and practice<br>orthographic projections of points, straight<br>lines and planes.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Mechanis<br>and Responds to Phenom<br>and<br>AffectiveCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>Applying, Complex Over<br>Response and Responds to<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |                |                               |           | Affective               |                             |       |       |         |          |  |
| CO2orthographic projections of points, straight<br>lines and planes.Psychomotor<br>and<br>Affectiveand Responds to Phenom<br>and<br>AffectiveCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and<br>tumented solids.Cognitive<br>PsychomotorApplying, Complex Over<br>Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>tumented solids.Cognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>PsychomotorCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>tumented solids.Cognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |     | Interpret,     | construct and pra             | actice    | Cognitive               | Unde                        | ersta | nding | , Mec   | hanism   |  |
| CO3lines and planes.and<br>AffectiveCO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and<br>to PhenomenaCognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>to PhenomenaCognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO   | 2   | orthographi    | c projections of points, str  | raight    | Psychomotor             | and l                       | Resp  | onds  | to Phe  | enomena  |  |
| CO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>PsychomotorCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | -   | lines and pl   | anes.                         |           | and                     |                             |       |       |         |          |  |
| CO3Construct Sketch and Practice projection<br>of solids in various positions and true<br>shape of sectioned solids.Cognitive<br>Psychomotor<br>and<br>AffectiveApplying, Complex Over<br>Response and Responds t<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO4Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds t<br>PsychomotorCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds t<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |                |                               |           | Affective               |                             |       | ~     |         | -        |  |
| CO3of solids in various positions and true<br>shape of sectioned solids.Psychomotor<br>and<br>AffectiveResponse and Responds to<br>PhenomenaCO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorApplying, Complex Over<br>Response and Resp<br>to Phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     | Construct S    | Sketch and Practice proje     | Cognitive | Applying, Complex Overt |                             |       |       |         |          |  |
| CO4       Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids.       Interpret, Sketch and Practice the Cognitive Psychomotor Overt Response and Phenomena         CO4       Construct sketch and practice isometric and perspective views of simple and perspective views of simple and Phenomena       Cognitive Psychomotor Affective       Understanding, Complex Overt Response and Re                                                                                                       | CO   | 3   | of solids i    | n various positions and       | l true    | Psychomotor             | Response and Responds to    |       |       |         |          |  |
| CO4Interpret,<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveUnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>Psychomotor<br>AffectiveApplying, Complex Over<br>Response and Resp<br>Affective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     | shape of sec   | ctioned solids.               |           | and                     | Phen                        | ome   | na    |         |          |  |
| CO4Interpret, Sketch and Practice the<br>development of lateral surfaces of simple<br>and truncated solids, intersection of solids.Cognitive<br>Psychomotor<br>and<br>AffectiveOnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>Psychomotor<br>CognitiveOnderstanding, Complex<br>Overt Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsPsychomotor<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>Phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     | Tratarrayat    | Cleater and Dur-the-          | Affective |                         |                             |       |       |         |          |  |
| CO4development of lateral suffaces of simple<br>and truncated solids, intersection of solids.Psychomotor<br>and<br>AffectiveOvert Response and Resp<br>to PhenomenaCO5Construct sketch and practice isometric<br>and perspective views of simple and<br>truncated solidsCognitive<br>PsychomotorApplying, Complex Over<br>Response and Responds to<br>Psychomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     | Interpret,     | Sketch and Practice           | ime       | Developmentor           | Onde                        | ersta | naing | , COIII | Desmonde |  |
| CO5       Construct sketch and practice isometric and perspective views of simple view                                         | CO   | 4   | development    | it of lateral surfaces of s   |           | Psychomotor             | Overt Response and Responds |       |       |         |          |  |
| Construct sketch and practice isometric       Cognitive       Applying, Complex Over         and perspective views of simple views of simple and perspective views of simple and pe                                                                            |      |     | and truncate   | ed solids, intersection of so | onus.     | and<br>Affective        | to Phenomena                |       |       |         |          |  |
| <b>CO5</b> and perspective views of simple and Psychomotor Response and Responds to the state of solids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     | Construct      | sketch and practice isor      | netric    | Cognitive               | Applying Complex Overt      |       |       |         |          |  |
| CO5 and perspective views of simple and response and resp |      |     | and perspe     | active views of simple        | and       | Psychomotor             | Response and Responds to    |       |       |         |          |  |
| I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO   | 5   | truncated so   | lide                          |           | and                     | Phenomena                   |       |       |         |          |  |
| Affective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     | in unicated St | /110.5.                       |           | Affective               | i nenomena                  |       |       |         |          |  |

#### UNIT-I

#### INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE

6+6

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects. Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves.

| UNIT –II |
|----------|
|----------|

#### **PROJECTION OF POINTS, LINES AND PLANE SURFACES**

6+6

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection.

# UNIT-IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6+6Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one<br/>plane of projection – change of position & auxiliary projection methods – sectioning of above solids

| in simple vertic                                                                                                                                                                                                                                                                                                                                                                                                              | al position                                                                                                                                                                                                                    | s by cutting plane incline              | d to one reference plane and perper | ndicular to the |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-----------------|--|--|--|--|--|--|
| other and above solids in inclined position with cutting planes parallel to one reference plane - true                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                         |                                     |                 |  |  |  |  |  |  |
| shapes of sections.                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                         |                                     |                 |  |  |  |  |  |  |
| UNIT –IV                                                                                                                                                                                                                                                                                                                                                                                                                      | DEVEL                                                                                                                                                                                                                          | OPMENT OF SURFAC<br>SOL                 | ES AND INTERSECTION OF              | 6+6             |  |  |  |  |  |  |
| Need for development of surfaces – development of lateral surfaces of simple and truncated solids prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset |                                                                                                                                                                                                                                |                                         |                                     |                 |  |  |  |  |  |  |
| UNIT V                                                                                                                                                                                                                                                                                                                                                                                                                        | ISC                                                                                                                                                                                                                            | METRIC AND PERSP                        | ECTIVE PROJECTIONS                  | 6+6             |  |  |  |  |  |  |
| truncated prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                |                                         |                                     |                 |  |  |  |  |  |  |
| THEOR                                                                                                                                                                                                                                                                                                                                                                                                                         | Y 30                                                                                                                                                                                                                           | PRACTICAL 30                            | TOTAL HRS 60                        |                 |  |  |  |  |  |  |
| TEXT BOOK                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                                                                                                                                                                                                              |                                         |                                     |                 |  |  |  |  |  |  |
| <ol> <li>Bhatt,N.D, "Engineering Drawing", Charotar Publishing House, 46<sup>th</sup> Edition-2003.</li> <li>Natarajan,K.V, " A Textbook of Engineering Graphics", Dhanalakshmi Publishers,<br/>Chennai, 2006.</li> <li>Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam,<br/>2013</li> </ol>                                                                                              |                                                                                                                                                                                                                                |                                         |                                     |                 |  |  |  |  |  |  |
| REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                                                                                                                                                                                                              |                                         |                                     |                 |  |  |  |  |  |  |
| <ol> <li>Luzadd<br/>XI Editi</li> <li>Venugo</li> </ol>                                                                                                                                                                                                                                                                                                                                                                       | <ol> <li>Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd,<br/>XI Edition - 2001.</li> <li>Venugonal K and Prabhu Raia V "Engineering Graphics" New Age International(P) I td</li> </ol> |                                         |                                     |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                         |                                     |                 |  |  |  |  |  |  |
| 5. Gopalal<br>4. Shah.M                                                                                                                                                                                                                                                                                                                                                                                                       | .B and Ran                                                                                                                                                                                                                     | a,B.C.,"Engineering Drawing             | ying", Pearson Education, 2005.     | 5.              |  |  |  |  |  |  |
| E RESOURCI                                                                                                                                                                                                                                                                                                                                                                                                                    | ES                                                                                                                                                                                                                             | , , , , , , , , , , , , , , , , , , , , |                                     |                 |  |  |  |  |  |  |
| 1. <u>http://pe</u>                                                                                                                                                                                                                                                                                                                                                                                                           | eriyarnet/Ec                                                                                                                                                                                                                   | ontent                                  |                                     |                 |  |  |  |  |  |  |
| 2. <u>http://n</u>                                                                                                                                                                                                                                                                                                                                                                                                            | otel.ac.in/co                                                                                                                                                                                                                  | ourses/112103019/                       |                                     |                 |  |  |  |  |  |  |

#### SEMESTER II

| COURSE CODE             | COURSE NAME                                    |                      | L             | Т        | Р      | С     |
|-------------------------|------------------------------------------------|----------------------|---------------|----------|--------|-------|
| XMA201                  | CALCULUS ORDINARY DIFFEREN                     | NTIAL                | 3             | 1        | 0      | 4     |
| C P A                   | EQUATIONS AND COMPLEX VARI                     | ABLE                 | L             | Т        | P      | Н     |
| 4 0 0                   |                                                |                      | 4             | 1        | 0      | 5     |
| PREREQUISITE: 1         | Mathematics I (Calculus and Linear Algeb       | ora)                 |               |          |        |       |
| COURSE OUTCOM           | MES:                                           |                      |               |          |        |       |
| <b>Course outcomes:</b> |                                                | Domain               |               |          | Le     | vel   |
| CO1: Find double a      | and triple integrals and to find line, surface | Cognitive            |               | App      | olying | 5     |
| and volume of an        | n integral by Applying Greens, Gauss           |                      |               | Ren      | nemb   | ering |
| divergence and Stoke    | es theorem.                                    |                      |               |          |        |       |
| CO2: Solve first ord    | er differential equations of different types   | Cognitive            |               | Applying |        |       |
| which are solvable for  | or p, y, x and Clairaut's type.                |                      |               |          |        |       |
| CO3:Solve Second of     | order ordinary differential equations with     | Cognitive            | Remembering   |          |        |       |
| variable coefficients   | using various methods.                         |                      |               |          |        |       |
| CO4:Use CR equation     | ons to verify analytic functions and to find   | Cognitive            | Understanding |          |        |       |
| harmonic functions a    | nd harmonic conjugate.                         | Rem                  |               |          | nemb   | ering |
| Conformal mapping       | g of translation and rotation. Mobius          | Guided               |               |          | ded    |       |
| transformation.         |                                                | Psychomotor Response |               |          |        | e     |
| CO5:Apply Cauchy        | residue theorem to evaluate contour            | Cognitive Applying   |               |          |        | 5     |
| integrals involving si  | ine and cosine function and to state           |                      |               |          |        |       |
| Cauchy integral form    | nula, Liouvilles theorem.                      |                      |               |          |        |       |
| Taylor's series, ze     | ros of analytic functions, singularities,      | Affective Receiving  |               |          | g      |       |
| Laurent's series.       |                                                |                      |               |          |        |       |

| UNIT I MULTIVARIABLE CALCULUS (INTEGRATION)                                                      | 15             |
|--------------------------------------------------------------------------------------------------|----------------|
| Multiple Integration: Double integrals (Cartesian) - change of order of integration in dou       | ble integrals  |
| - Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar line integrals | grals - vector |
| line integrals - scalar surface integrals - vector surface integrals - Theorems of Greer         | n, Gauss and   |
| Stokes.                                                                                          |                |
| UNIT II FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS                                              | 15             |
| Exact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree     | ee: equations  |
| solvable for p - equations solvable for y- equations solvable for x and Clairaut's type.         |                |
| UNIT III ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS                                        | 15             |
| Second order linear differential equations with variable coefficients- method of                 | variation of   |
| parameters - Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bes            | sel functions  |
| of the first kind and their properties.                                                          |                |
| UNIT IV COMPLEX VARIABLE – DIFFERENTIATION                                                       | 15             |
| Differentiation-Cauchy-Riemann equations- analytic functions-harmonic functions-findi            | ng harmonic    |
| conjugate- elementary analytic functions (exponential, trigonometric, logarithm) and the         | ir properties- |
| Conformal mappings- Mobius transformations and their properties.                                 |                |
| UNIT V COMPLEX VARIABLE – INTEGRATION                                                            | 15             |
| Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral form                | ula (without   |
| proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions-        | singularities- |
| Laurent's series - Residues- Cauchy Residue theorem (without proof)- Evaluation of def           | inite integral |
| involving sine and cosine- Evaluation of certain improper integrals using the Bromwich c         | contour.       |
| LECTURE TUTORIAL TOT.                                                                            | AL             |
|                                                                                                  |                |

| 60           | 15                                                       | 75                                                        |
|--------------|----------------------------------------------------------|-----------------------------------------------------------|
| Text Book    | <b>K:</b>                                                | · · · · · · · · · · · · · · · · · · ·                     |
| 1. B.S. Gre  | ewal, "Higher Engineering Mathematics"                   | , Khanna Publishers, 40th <sup>th</sup> Edition, 2008.    |
| Reference    | Books:                                                   |                                                           |
| 1.G.B. The   | omas and R.L. Finney, "Calculus and Ana                  | alytic geometry", 9 <sup>th</sup> Edition, Pearson,       |
| Reprint,     | 2002.                                                    |                                                           |
| 2. Erwin k   | reyszig, "Advanced Engineering Mathem                    | atics", 9 <sup>th</sup> Edition, John Wiley & Sons, 2006. |
| 3.W. E. Bo   | byce and R. C. DiPrima, "Elementary Dif                  | ferential Equations and Boundary Value                    |
| Problems     | s", 9 <sup>th</sup> Edn. Wiley India, 2009.              |                                                           |
| 4. S. L. Ro  | oss, "Differential Equations", 3 <sup>rd</sup> Ed., Wild | ey India, 1984.                                           |
| 5.E. A. Co   | ddington, "An Introduction to Ordinary I                 | Differential Equations", Prentice Hall India,             |
| 1995.        |                                                          |                                                           |
| 6. E. L. Inc | ce, "Ordinary Differential Equations", Do                | over Publications, 1958.                                  |
| 7.J. W. Bro  | own and R. V. Churchill, "Complex Varia                  | ables and Applications", 7 <sup>th</sup> Ed., McGraw      |
| Hill, 200    | )4.                                                      |                                                           |
| 8. N.P. Bal  | li and Manish Goyal, "A text book of Eng                 | gineering Mathematics", Laxmi                             |
| Publicat     | tions, Reprint, 2008.                                    |                                                           |

|            | PI                    | ROGRAMMING FOR PROBLE            | M SOLVIN  | G          |          |       |  |  |
|------------|-----------------------|----------------------------------|-----------|------------|----------|-------|--|--|
| COUR       | SE CODE               | XCP 202                          | L         | Т          | Р        | С     |  |  |
| COUR       | SE NAME               | PROGRAMMING FOR                  | 3         | 0          | 2 5      |       |  |  |
|            |                       | PROBLEM SOLVING                  |           |            |          |       |  |  |
| PRER       | EQUISITES             |                                  | L         | Т          | P I      |       |  |  |
| C:P:A      |                       |                                  | 3         | 1          | 3        | 7     |  |  |
| COUR       | SE OUTCOMES           | 5                                | DOMAIN    |            | LEVE     | Ĺ     |  |  |
| CO1        | <b>Define</b> progr   | ramming fundamentals and         | Cognitive |            | Remember |       |  |  |
|            | Solve simple          | programs using I/O statements    | Psychomo  | Understand |          |       |  |  |
|            |                       |                                  |           | Apply      |          |       |  |  |
| CO2        | Define syntax a       | and write simple programs using  | Cognitive |            | Remember |       |  |  |
|            | control structure     | es and arrays                    | Psychome  | Understand |          |       |  |  |
|            |                       |                                  |           |            | Apply    | r     |  |  |
| CO3        | Explain and           | write simple programs using      | Cognitive |            | Under    | stand |  |  |
|            | functions and p       | ointers                          | Psychomo  | otor       | Apply    |       |  |  |
| <b>CO4</b> | Explain and           | write simple programs using      | Cognitive |            | Under    | stand |  |  |
|            | structures and u      | nions                            | Psychomo  | Apply      |          |       |  |  |
|            |                       |                                  |           |            | Analy    | ze    |  |  |
| CO5        | Explain and w         | rite simple programs using files | Cognitive | Remember   |          |       |  |  |
|            | and <b>Build</b> simp | le projects                      |           |            | Under    | stand |  |  |
|            |                       |                                  |           |            | Create   | 2     |  |  |

| UNIT I PROGRAMMING FUNDAMENTALS AND INPUT/OUTPUT<br>STATEMENTS                         | 9+6 |
|----------------------------------------------------------------------------------------|-----|
| Theory                                                                                 |     |
| Introduction to components of a computer system. Program – Flowchart – Pseudo          |     |
| code – Software – Introduction to C language – Character set – Tokens: Identifiers.    |     |
| Keywords, Constants, and Operators – sample program structure -Header files – Data     |     |
| Types-Variables - Output statements – Input statements.                                |     |
| Practical                                                                              |     |
| 1. Program to display a simple picture using dots.                                     |     |
| 2. Program for addition of two numbers                                                 |     |
| 3. Program to swap two numbers                                                         |     |
| 4. Program to solve any mathematical formula.                                          |     |
| UNIT II CONTROL STRUCTURE AND ARRAYS                                                   | 9+6 |
| Theory                                                                                 |     |
| Control Structures – Conditional Control statements: Branching, Looping -              |     |
| Unconditional control structures: switch, break, continue, goto statements - Arrays:   |     |
| One Dimensional Array – Declaration – Initialization – Accessing Array Elements –      |     |
| Searching – Sorting – Two Dimensional arrays - Declaration – Initialization – Matrix   |     |
| Operations – Multi Dimensional Arrays - Declaration – Initialization. Storage classes: |     |
| auto – extern – static. Strings: Basic operations on strings.                          |     |
| Practical                                                                              |     |
| 1. Program to find greatest of 3 numbers using Branching Statements                    |     |
| 2. Program to display divisible numbers between n1 and n2 using looping Statement      |     |
| 3. Program to remove duplicate element in an array.                                    |     |
| 4. Program to perform string operations.                                               |     |
|                                                                                        |     |

| 5. Performing basic sorting a                                                            | lgorithms                 |                      |                    |               |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|---------------------------|----------------------|--------------------|---------------|--|--|--|--|--|--|
| UNIT III FUNCTIONS AND                                                                   | POINTERS                  |                      |                    | 9+6           |  |  |  |  |  |  |
| Theory                                                                                   |                           |                      |                    |               |  |  |  |  |  |  |
| Functions: Built in functions                                                            | - User Defined Fu         | nctions - Paramet    | er passing metho   | ods -         |  |  |  |  |  |  |
| Passing arrays to functions – Recursion - Programs using arrays and functions.Pointers - |                           |                      |                    |               |  |  |  |  |  |  |
| Pointer declaration - Addre                                                              | ess operator - Poi        | nter expressions &   | k pointer arithme  | tic -         |  |  |  |  |  |  |
| Pointers and function - Call b                                                           | by value - Call by H      | Reference - Pointe   | er to arrays - Us  | e of          |  |  |  |  |  |  |
| Pointers in self-referential stru                                                        | ctures-Notion of link     | ed list(no impleme   | entation).         |               |  |  |  |  |  |  |
| Practical                                                                                |                           |                      |                    |               |  |  |  |  |  |  |
| 1. Program to find factorial of a                                                        | a given number using      | g four function typ  | es.                |               |  |  |  |  |  |  |
| 2. Programs using Recursion                                                              | such as Finding Fa        | ctorial, Fibonacci   | series, Ackerm     | an            |  |  |  |  |  |  |
| function etc. Quick sort or M                                                            | Merge sort                |                      |                    |               |  |  |  |  |  |  |
| 3. Programs using Pointers                                                               |                           |                      |                    |               |  |  |  |  |  |  |
| UNIT IV STRUCTURES A                                                                     | AND UNIONS                |                      |                    | 9+6           |  |  |  |  |  |  |
| Theory<br>Structures and Unions Civing                                                   |                           |                      | tuna Eurotiana a   |               |  |  |  |  |  |  |
| Structures and Unions - Giving                                                           | g values to members       | - Initializing struc | ture -Functions a  | nd            |  |  |  |  |  |  |
| structures - Passing structure                                                           | to elements to fur        | tructure and Union   | entire function    | to            |  |  |  |  |  |  |
| Prostical                                                                                | - Structure within a s    | tructure and Onio    | 11.                |               |  |  |  |  |  |  |
| 1 Program to read and display                                                            | student mark sheet S      | tructures with ver   | iables             |               |  |  |  |  |  |  |
| 2 Program to read and display                                                            | student marks of a cl     | lass using Structur  | es with arrays     |               |  |  |  |  |  |  |
| 3. Program to create linked list                                                         | using Structures wit      | h pointers           | es with allays     |               |  |  |  |  |  |  |
| UNIT V FILES                                                                             |                           |                      |                    |               |  |  |  |  |  |  |
| Theory                                                                                   |                           |                      |                    |               |  |  |  |  |  |  |
| File management in C - File                                                              | operation functions       | in C - Defining      | and opening a fi   | ile -         |  |  |  |  |  |  |
| Closing a file - The getw an                                                             | d putw functions -        | The fprintf & fs     | canf functions - f | seek          |  |  |  |  |  |  |
| function – Files and Structures.                                                         |                           |                      |                    |               |  |  |  |  |  |  |
| Practical                                                                                |                           |                      |                    |               |  |  |  |  |  |  |
| 1. Program for copying content                                                           | ts of one file to anoth   | er file.             |                    |               |  |  |  |  |  |  |
| 2. Program using files using str                                                         | ructure with pointer      |                      |                    |               |  |  |  |  |  |  |
|                                                                                          | LECTURE                   | TUTORIAL             | PRACTICAL          | TOTAL         |  |  |  |  |  |  |
| HOURS                                                                                    | 45                        | 0                    | 30                 | 75            |  |  |  |  |  |  |
| <b>TEXT BOOKS/ REFERENCE</b>                                                             | ES                        |                      |                    |               |  |  |  |  |  |  |
| 1. Byron Gottfried, "Progra                                                              | amming with C",           | III Edition, (In     | dian Adapted       | Edition), TMH |  |  |  |  |  |  |
| publications, 2010                                                                       |                           |                      |                    |               |  |  |  |  |  |  |
| 2. Yeshwant Kanethker, "Let u                                                            | s C", BPB Publication     | ons, 2008            |                    |               |  |  |  |  |  |  |
| 3. Brian W. Kernighan and De                                                             | nnis M. Ritchie, "Th      | e C Programming      | Language", Pear    | son Education |  |  |  |  |  |  |
| Inc. 2005                                                                                |                           |                      |                    |               |  |  |  |  |  |  |
| 4. Behrouz A. Forouzan and F                                                             | Richard. F. Gilberg,      | "A Structured Pro    | gramming Appro     | oach Using    |  |  |  |  |  |  |
| C", II Edition, Brooks–Cole                                                              | Thomson Learning F        | ublications, 2001    |                    | . 1           |  |  |  |  |  |  |
| 5. Johnson baugh R. and Kali                                                             | In M., "Applications      | Programming in       | ANSI C", III E     | attion,       |  |  |  |  |  |  |
| Pearson Education India, 200                                                             | US<br>nomina in ANISTON T | oto McCrosse II'll   |                    |               |  |  |  |  |  |  |
| o. E. Balaguruswamy, "Program                                                            | nining in ANSI C", T      | ata McGraw-Hill      |                    |               |  |  |  |  |  |  |

#### **COs VERSUS POs MAPPING**

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO<br>11 | PO<br>12 | РЕ<br>01 | РЕ<br>02 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----------|----------|----------|----------|
| CO 1 | 2   | 2   | 2   | 2   | 1   |     |     |     |     |      |          |          | 1        | 0        |
| CO 2 | 2   | -   | 2   | 1   |     |     |     |     |     |      |          | 1        |          | 1        |
| CO 3 | 2   |     |     |     |     |     |     | 1   |     |      |          |          |          | 1        |
| CO 4 | 2   | 2   | 2   |     | 1   | 1   | 1   |     |     | 1    |          |          |          |          |
| CO 5 | 2   |     |     |     |     |     |     | 1   |     | 1    |          |          |          |          |
|      | 10  | 4   | 6   | 3   | 2   | 1   | 1   | 2   |     | 2    |          | 1        | 1        | 2        |

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

| COU                                                                           | RSE CODE                       | COURSE NAME                                | L        | Т        | Р      | SS                 | C    |  |  |  |  |
|-------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|----------|----------|--------|--------------------|------|--|--|--|--|
|                                                                               | XGS203                         |                                            | 2        | 0        | 1      | 0                  | 3    |  |  |  |  |
|                                                                               |                                | ENGLISH                                    | L        | Т        | Р      | SS                 | Η    |  |  |  |  |
|                                                                               | C: P: A                        | 2.6:0.4:0                                  | 2        | 0        | 2      | 0                  | 4    |  |  |  |  |
| COUH                                                                          | RSE OUTCOMES                   |                                            | DO       | EL       |        |                    |      |  |  |  |  |
| CO1                                                                           | Ability to recall t            | Cogni                                      | tive     | F        | Rememb | er                 |      |  |  |  |  |
| CO2Apply the techniques in sentence patternsCognitiveApply                    |                                |                                            |          |          |        |                    |      |  |  |  |  |
| CO3                                                                           | Identify the com               | mon errors in sentences                    | Cogni    | tive     | F      | Rememb             | er   |  |  |  |  |
| <b>CO4</b>                                                                    | Construct the Na               | ature and Style of sensible Writing        | Cogni    | tive     | 0      | Create             |      |  |  |  |  |
| CO5                                                                           | <b>Practicing</b> the wa       | riting skills                              | Psych    | omotor   | C<br>F | Guided<br>Response | ð    |  |  |  |  |
| CO6                                                                           | <b>Grasping</b> the etiquettes | techniques in learning sounds and          | Psych    | omotor   | A      | Adapting           | r    |  |  |  |  |
| UNIT                                                                          | I VOCABULAR                    | Y BUILDING                                 |          |          |        |                    | 9    |  |  |  |  |
| 1.1 Th                                                                        | e concept of Word              | Formation                                  |          |          |        |                    |      |  |  |  |  |
| 1.2 Ro                                                                        | oot words from for             | eign languages and their use in English    |          |          |        |                    |      |  |  |  |  |
| 1.3 Ac                                                                        | equaintance with pr            | efixes and suffixes from foreign languages | s in Eng | glish to | form   | derivat            | ives |  |  |  |  |
| 1.4 Synonyms, and standard abbreviations.                                     |                                |                                            |          |          |        |                    |      |  |  |  |  |
| UNIT                                                                          | II BASIC WRIT                  | TING SKILLS                                |          |          |        |                    | 9    |  |  |  |  |
| 2.1 Set                                                                       | ntence Structures              |                                            |          |          |        |                    |      |  |  |  |  |
| 2.2 Us                                                                        | e of phrases and cl            | auses in sentences                         |          |          |        |                    |      |  |  |  |  |
| 2.3 Im                                                                        | portance of proper             | punctuation                                |          |          |        |                    |      |  |  |  |  |
| 2.4 Cr                                                                        | eating coherence               |                                            |          |          |        |                    |      |  |  |  |  |
| 2.5 Or                                                                        | ganizing principles            | of paragraphs in documents                 |          |          |        |                    |      |  |  |  |  |
| 2.6 Te                                                                        | chniques for writin            | g precisely                                |          |          |        |                    |      |  |  |  |  |
| UNIT                                                                          | III IDENTIFYIN                 | IG COMMON ERRORS IN WRITING                | r        |          |        |                    | 9    |  |  |  |  |
| 3.1 Su                                                                        | bject-verb agreeme             | ent                                        |          |          |        |                    |      |  |  |  |  |
| 3.2 No                                                                        | oun-pronoun agreer             | nent                                       |          |          |        |                    |      |  |  |  |  |
| 3.3 Mi                                                                        | isplaced modifiers             |                                            |          |          |        |                    |      |  |  |  |  |
| 3.4 Ar                                                                        | ticles                         |                                            |          |          |        |                    |      |  |  |  |  |
| 3.5  Pre                                                                      | epositions                     |                                            |          |          |        |                    |      |  |  |  |  |
| 3.0 Ke                                                                        | coundancies                    |                                            |          |          |        |                    |      |  |  |  |  |
| 3./ Cli                                                                       |                                |                                            |          |          |        |                    | •    |  |  |  |  |
|                                                                               | IV NAIUKE AN                   | D 51 I LE OF SENSIBLE WRITING              |          |          |        |                    | 9    |  |  |  |  |
| 4.1 De                                                                        | scribing                       |                                            |          |          |        |                    |      |  |  |  |  |
| 4.2 Defining                                                                  |                                |                                            |          |          |        |                    |      |  |  |  |  |
| 4.5 Classifying<br>4.4 Providing examples or evidence                         |                                |                                            |          |          |        |                    |      |  |  |  |  |
| 4.4 1 Toylung examples of evidence<br>4.5 Writing introduction and conclusion |                                |                                            |          |          |        |                    |      |  |  |  |  |
| LINIT V WRITING PRACTICES                                                     |                                |                                            |          |          |        |                    |      |  |  |  |  |
| UNIT V WKITTING PKAUTICES                                                     |                                |                                            |          |          |        |                    |      |  |  |  |  |
| 5.1 CO<br>5 2 Dm                                                              | Acis Writing                   |                                            |          |          |        |                    |      |  |  |  |  |
|                                                                               | on Writing                     |                                            |          |          |        |                    |      |  |  |  |  |

 Table 1: Mapping of COs with POs:

|                 | PO | PO | PO | PO | PO  | PO    | PO     | PO     | PO     | <b>PO1</b> | <b>PO1</b> | <b>PO1</b> | PSO | PSO |
|-----------------|----|----|----|----|-----|-------|--------|--------|--------|------------|------------|------------|-----|-----|
|                 | 1  | 2  | 3  | 4  | 5   | 6     | 7      | 8      | 9      | 0          | 1          | 2          | 1   | 2   |
| CO1             | 2  | 0  | 0  | 0  | 0   | 0     | 2      | 0      | 1      | 0          | 0          | 0          | 0   | 0   |
| CO2             | 2  | 0  | 0  | 0  | 0   | 0     | 2      | 0      | 1      | 0          | 0          | 0          | 0   | 0   |
| CO3             | 1  | 0  | 0  | 0  | 0   | 0     | 1      | 0      | 1      | 0          | 0          | 0          | 0   | 0   |
| CO4             | 2  | 0  | 0  | 0  | 0   | 0     | 1      | 0      | 1      | 0          | 0          | 0          | 0   | 0   |
| CO5             | 0  | 0  | 0  | 0  | 0   | 0     | 0      | 0      | 0      | 0          | 0          | 0          | 0   | 0   |
| Total           | 7  | 0  | 0  | 0  | 0   | 0     | 6      | 0      | 4      | 0          | 0          | 0          | 0   | 0   |
| Scaled<br>Value | 2  | 0  | 0  | 0  | 0   | 0     | 2      | 0      | 1      | 0          | 0          | 0          | 0   | 0   |
|                 | 1  | 0  | 0  | 0  | 0   | 0     | 1      | 0      | 1      | 0          | 0          | 0          | 0   | 0   |
|                 | •  |    |    |    | 1-: | 5=1,6 | 5-10 = | 2, 11- | 15 = 3 | •          | •          | •          |     |     |

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

| COU   | URSE CODE                                                                    |                                         | COURSE                                                      | NAME                                                         |                                              | L                            | Т                     | P                             | С                        |  |  |
|-------|------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------------------|-----------------------|-------------------------------|--------------------------|--|--|
|       | XAC204                                                                       | Α                                       | PPLIED CHEN<br>ENGINI                                       | 3                                                            | 1                                            | 1                            | 5                     |                               |                          |  |  |
| PRER  | EQUISITES                                                                    | Nil                                     |                                                             |                                                              |                                              | L                            | Т                     | Р                             | Н                        |  |  |
| C:P:A |                                                                              | 3.5:1.0:                                | ).5                                                         | 3                                                            | 1                                            | 3                            | 7                     |                               |                          |  |  |
| COUR  | RSE OUTCOME                                                                  | Ś                                       | DOMAIN                                                      |                                                              |                                              |                              | LE                    | LEVEL                         |                          |  |  |
| CO1   | <b>Identify</b> the pelectron affinite <b>Describe</b> the v and alkalinity. | eriodic p<br>ty, oxida<br>arious wa     | roperties such a<br>tion states and<br>ater quality para    | as ionization ener<br>l electro negativ<br>meters like hardn | gy,<br>ity.<br>iess                          | Cognitive I<br>Psychomotor I |                       |                               | Remember<br>Perception   |  |  |
| CO2   | <b>Explain</b> and <b>I</b> atomic, molecu                                   | <b>Measure</b><br>lar orbital           | microscopic ch<br>s and intermolec                          | emistry in terms<br>ular forces.                             | of                                           | Cogni<br>Psycho              | tive<br>omotor        | Understand<br>Set             |                          |  |  |
| CO3   | <b>Interpret</b> bulk and kinetic cons                                       | properties<br>sideration                | s and processes t<br>s.                                     | using thermodynar                                            | nic                                          | Cognit<br>Psycho<br>Affect   | tive<br>omotor<br>ive | Apply<br>Mechanism<br>Receive |                          |  |  |
| CO4   | <b>Describe, Illus</b> are used in the s                                     | that                                    | Cognit<br>Psycho<br>Affect                                  | tive<br>omotor<br>ive                                        | Remember<br>Analyze<br>Perception<br>Respond |                              |                       |                               |                          |  |  |
| CO5   | Apply, Measu<br>electromagnetic<br>energy levels in                          | <b>ure</b> and<br>spectrum<br>various s | <b>Distinguish</b><br>used for exciting<br>pectroscopic tec | the ranges of<br>ag different molecu<br>hniques              | the<br>11ar                                  | Cognit<br>Psycho             | tive<br>omotor        | Ren<br>App<br>Med             | nember<br>oly<br>chanism |  |  |

#### Table 1: Mapping of COs with POs

|     | <b>PO1</b> | <b>PO2</b> | <b>PO3</b>           | <b>PO4</b> | PO5                 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> |
|-----|------------|------------|----------------------|------------|---------------------|------------|------------|------------|------------|
| CO1 | 3          | 0          | 0                    | 0          | 0                   | 0          | 2          | 3          | 3          |
| CO2 | 2          | 0          | 0                    | 0          | 0                   | 0          | 1          | 2          | 2          |
| CO3 | 3          | 0          | 0                    | 0          | 0                   | 0          | 2          | 3          | 3          |
| CO4 | 8          | 0          | 0                    | 0          | 0                   | 0          | 3          | 3          | 3          |
| CO5 | 3          | 0          | 0                    | 0          | 0                   | 0          | 2          | 2          | 3          |
|     | •          | 1 -        | $-5 \rightarrow 1$ , | 6 - 10-    | $\rightarrow 2, 11$ | -15→       | 3          |            |            |

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

| SU                                                                                                           | JB CO                                                                                       | DE                | SUB NAME                              |                                        | L     | Т      | Р                 | С     |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|---------------------------------------|----------------------------------------|-------|--------|-------------------|-------|--|
| X                                                                                                            | KWP20                                                                                       | )5                |                                       |                                        | 1     | 0      | 2                 | 3     |  |
| С                                                                                                            | Р                                                                                           | Α                 | WORKSHOP PRACT                        | ICES                                   | L     | Т      | Р                 | Η     |  |
| 1                                                                                                            | 2                                                                                           | 0                 |                                       |                                        | 2     | 0      | 4                 | 6     |  |
| PRER                                                                                                         | EQUI                                                                                        | SITE:             |                                       |                                        |       |        | -                 |       |  |
|                                                                                                              |                                                                                             | COUI              | RSE OUTCOMES                          | DOMAIN                                 |       | LE     | VEL               |       |  |
| COI                                                                                                          | Su                                                                                          | mmariz            | e the machining methods and           | Cognitive                              | Unde  | rstan  | ding              |       |  |
|                                                                                                              | Pr                                                                                          | actice m          | achining operation.                   | Psychomotor                            | Guid  | ed res | sponse            |       |  |
|                                                                                                              | De                                                                                          | fining            | metal casting process, moulding       | Cognitive                              | Reme  | ember  | ring              |       |  |
| CO2                                                                                                          | 2 me                                                                                        | ethods a          | and relates Casting and Smithy        | Psychomotor                            | Perce | ption  | l                 |       |  |
| applications.                                                                                                |                                                                                             |                   |                                       |                                        |       |        |                   |       |  |
|                                                                                                              | ying                                                                                        |                   |                                       |                                        |       |        |                   |       |  |
| CO3                                                                                                          | and                                                                                         | d Pra             | ctice carpentry and fitting           | Psychomotor                            | Guid  | ed res | sponse            |       |  |
|                                                                                                              | op                                                                                          | erations.         |                                       |                                        |       |        |                   |       |  |
| CO4                                                                                                          |                                                                                             | mmariz            | e metal joining operation and         | Cognitive                              | Unde  | rstan  | ding              |       |  |
|                                                                                                              | Pr                                                                                          | actice w          | elding operation.                     | Psychomotor                            | Guid  | ed res | sponse            |       |  |
| ~~~                                                                                                          |                                                                                             | ustrate           | the, electrical and electronics       | Cognitive                              | Unde  | rstan  | ding              |       |  |
| C05                                                                                                          | bas                                                                                         | sics and          | ·                                     | Psychomotor                            | Origi | natio  | n                 |       |  |
| COLU                                                                                                         |                                                                                             | akes app          | propriate connections.                |                                        |       |        |                   |       |  |
| COUR                                                                                                         | RSE CO                                                                                      | JNTEN             |                                       |                                        |       |        |                   |       |  |
| EXP.                                                                                                         | NO.                                                                                         |                   | TITLE                                 |                                        |       |        | CO                |       |  |
| 1                                                                                                            | т                                                                                           |                   | · · · · · · · · · · · · · · · · · · · |                                        |       | K      |                   | ION   |  |
| 1                                                                                                            |                                                                                             | ntroduct          | ion to machining process              |                                        |       | _      | <u>COI</u>        |       |  |
| 2                                                                                                            |                                                                                             | lain turr         | ling using lathe operation            |                                        |       | _      | <u>COI</u>        |       |  |
| 3                                                                                                            |                                                                                             |                   | ion to CNC                            |                                        |       |        | <u>CO1</u>        |       |  |
| 4                                                                                                            |                                                                                             | Jemonsu           | ration of plain turning using CINC    |                                        |       |        |                   |       |  |
| 5                                                                                                            | <u> </u>                                                                                    | tudy of           | metal casting operation               |                                        |       |        | $\frac{CO2}{CO2}$ |       |  |
| 0                                                                                                            |                                                                                             | Jemonsu           | ration of moulding process            |                                        |       |        | $\frac{CO2}{CO2}$ |       |  |
| /                                                                                                            | 2                                                                                           | tudy of           |                                       |                                        |       |        | $\frac{CO2}{CO2}$ |       |  |
| 8                                                                                                            | <u> </u>                                                                                    | ludy of           | carpentry tools                       |                                        |       |        | $\frac{003}{003}$ |       |  |
| 9                                                                                                            |                                                                                             | <u>1all lap j</u> | ont – Carpentry                       |                                        |       |        | $\frac{003}{003}$ |       |  |
| 10                                                                                                           |                                                                                             | tudy of           | fitting tools                         |                                        |       |        | $\frac{003}{002}$ |       |  |
| 11                                                                                                           | <u>د</u>                                                                                    | auara fi          | tting                                 |                                        |       |        | $\frac{003}{002}$ |       |  |
| 12                                                                                                           | с<br>г                                                                                      | rionaula          | ung<br>pr fitting                     |                                        |       |        | $\frac{003}{002}$ |       |  |
| 13                                                                                                           | <br>  C                                                                                     | tudy of           | u nung<br>walding tools               |                                        |       |        | $\frac{003}{004}$ |       |  |
| 14                                                                                                           | 0                                                                                           | auara h           | utticint wolding                      |                                        |       |        | $\frac{C04}{C04}$ |       |  |
| 15                                                                                                           | с<br>г                                                                                      | quare D           | Wolding                               |                                        |       |        | $\frac{C04}{C04}$ |       |  |
| 10                                                                                                           | 1<br>1.                                                                                     | ee joint          | - welding                             |                                        |       |        | <u> </u>          |       |  |
| 1/                                                                                                           |                                                                                             | nu ouuct          | a controlled by one switch            |                                        |       |        |                   |       |  |
| 18     One lamp controlled by one switch     COS       10     True lawne centrolled by in law it law     COS |                                                                                             |                   |                                       |                                        |       |        |                   |       |  |
| 19                                                                                                           | 17     1 wo famps controlled by single switch     CO5       20     Staircase wiring     CO5 |                   |                                       |                                        |       |        |                   |       |  |
| 20                                                                                                           | 20 Statrcase wiring COS                                                                     |                   |                                       |                                        |       |        |                   |       |  |
|                                                                                                              | BOO                                                                                         | ND<br>Tarla       | least IIIII by C. K. Haine Cl         | •••••••••••••••••••••••••••••••••••••• | V CI  | 11     |                   | (adi- |  |
| 1. WO                                                                                                        | orkshop                                                                                     | Techno            | blogy I,II,III, by S K Hajra, Cho     | udhary and A                           | K Ch  | aoudh  | ary. M            | ledia |  |
| Pro                                                                                                          | omoters                                                                                     | s and Pu          | blishers Pvt. Ltd., Bombay            |                                        |       |        |                   |       |  |

2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

#### REFERENCES

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd.,New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.
- **E RESOURCES** 
  - 1. <u>http://nptel.ac.in/courses/112107145/</u>

#### SEMESTER III

#### ELECTRICAL CIRCUIT ANALYSIS

| Cours | se Outcomes                                                                                                                                                                                     | Domain                   | Level                       |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|
| CO1   | Cog (app.): Apply network theorems for the analysis of electrical circuits.<br>Psy (GR): Respond network theorems for the analysis of electrical circuits.                                      | Cognitive<br>Psychomotor | Apply<br>Guided<br>Response |
| CO2   | Cog (U): Comparing the transient and steady-state response of R, RL and RLC electrical circuits.<br>Psy (P): Describe the transient and steady-state response of RL and RC electrical circuits. | Cognitive<br>Psychomotor | Understand<br>Perception    |
| CO3   | Cog (Anl.): Analyze circuits in the sinusoidal steady-state<br>(single-phase and three-phase).<br>Psy (M.): Construct and analyze of Single-phase transformer<br>for its Sinusoidal response    | Cognitive<br>Psychomotor | Analyze<br>Mechanism        |
| CO4   | Cog (Anl.): Laplace transforms analysis of ac circuits.<br>Psy (M.): Construct and analyze of RLC Series and parallel<br>resonance circuits.                                                    | Cognitive<br>Psychomotor | Analyze<br>Mechanism        |
| CO5   | Cog (U): To Understand the concept of one port and two port network functions.                                                                                                                  | Cognitive                | Understanding               |

| SUBCODE                                                                                         | SUB NAME                                            | L      | Т       | Р           | С      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------|---------|-------------|--------|--|--|--|--|--|
|                                                                                                 |                                                     | 3      | 1       | 2           | 5      |  |  |  |  |  |
| C:P:A = 3:1:0                                                                                   | ELECTRICAL CIRCUIT ANALYSIS                         | L      | Т       | Р           | CH     |  |  |  |  |  |
|                                                                                                 |                                                     | 3      | 1       | 2           | 6      |  |  |  |  |  |
| UNIT I NETWORK T                                                                                | THEOREMS                                            |        |         | <b>09</b> + | 03     |  |  |  |  |  |
| Superposition theorem, Thevenin theorem, Norton theorem, Maximum power transfer theorem,        |                                                     |        |         |             |        |  |  |  |  |  |
| Reciprocity theorem, Compensation theorem. Analysis with dependent current and voltage sources. |                                                     |        |         |             |        |  |  |  |  |  |
| Node and Mesh Analysis.                                                                         | Concept of duality and dual networks.               |        |         |             |        |  |  |  |  |  |
| LIST OF EXPERIMENTS                                                                             |                                                     |        |         |             |        |  |  |  |  |  |
| 1.Verification of KVL and                                                                       | I KCL using hardware and Digital simulation         |        |         |             |        |  |  |  |  |  |
| 2.Verification of Theveni                                                                       | n theorem by hardware and Digital simulation        |        |         |             |        |  |  |  |  |  |
| 3. Verification of Norton t                                                                     | heorem by hardware and Digital simulation           |        |         |             |        |  |  |  |  |  |
| 4.Verification of Maximu                                                                        | m power transfer theorem by hardware and Digital    | simula | tion    |             |        |  |  |  |  |  |
| UNIT II SOLUTION OF                                                                             | F FIRST AND SECOND ORDER NETWORKS                   |        |         | <b>08</b> + | 03     |  |  |  |  |  |
| Solution of first and second                                                                    | ond order differential equations for Series and pa  | rallel | R-L, I  | R-C, I      | RL-C   |  |  |  |  |  |
| circuits, initial and final of                                                                  | conditions in network elements, forced and free re  | sponse | e, time | const       | tants, |  |  |  |  |  |
| steady state and transient s                                                                    | state response.                                     |        |         |             |        |  |  |  |  |  |
| LIST OF EXPERIMENTS                                                                             |                                                     |        |         |             |        |  |  |  |  |  |
| 5. Transient analysis of Ser                                                                    | ries RL, RC circuits by hardware and Digital simula | tion   |         |             |        |  |  |  |  |  |
| 6.Sinusoidal analysis of Se                                                                     | eries RL, RC circuits by hardware and Digital simul | ation  |         |             |        |  |  |  |  |  |
| UNIT III SINUSOIDAL                                                                             | L STEADY STATE ANALYSIS                             |        |         | 08+         | 03     |  |  |  |  |  |
| Representation of sine fu                                                                       | nction as rotating phasor, phasor diagrams, imped-  | ances  | and ac  | lmitta      | nces,  |  |  |  |  |  |
| AC circuit analysis, effective or RMS values, average power and complex power. Three-phase      |                                                     |        |         |             |        |  |  |  |  |  |
| circuits. Mutual coupled circuits, Dot Convention in coupled circuits, Ideal Transformer.       |                                                     |        |         |             |        |  |  |  |  |  |
| LIST OF EXPERIMENTS                                                                             |                                                     |        |         |             |        |  |  |  |  |  |
| 7.Measurement of active p                                                                       | ower for star and delta connected balanced loads    |        |         |             |        |  |  |  |  |  |
|                                                                                                 |                                                     |        |         |             | _      |  |  |  |  |  |

| 8.Verification of self, mutual inductance and coefficient of coupling by using hard ware and Digital simulation |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------|---------------------|------------------|--|--|--|--|--|--|
| UNIT IV ELECTRICAL CIRCU                                                                                        | IT ANALYS                                                                                             | IS USING LAPI       | LACE                | 08+03            |  |  |  |  |  |  |
| TRANSFORMS                                                                                                      |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard               |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| inputs, convolution integral, inverse                                                                           | inputs, convolution integral, inverse Laplace transform, transformed network with initial conditions. |                     |                     |                  |  |  |  |  |  |  |
| Transfer function representation. Pole                                                                          | es and Zeros.                                                                                         | Frequency respon    | nse (magnitude ar   | nd phase plots), |  |  |  |  |  |  |
| series and parallel resonances                                                                                  |                                                                                                       |                     | -                   |                  |  |  |  |  |  |  |
| LIST OF EXPERIMENTS                                                                                             |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| 9.RLC Series and parallel Resonance                                                                             | by hardware a                                                                                         | and Digital simula  | ation               |                  |  |  |  |  |  |  |
| UNIT V NETWORK FUNCTIONS                                                                                        | AND TWO                                                                                               | PORT NETWO          | RK                  | 12+03            |  |  |  |  |  |  |
| Concepts of complex frequency, Tran                                                                             | nsform imped                                                                                          | ance, Networks f    | function of one po  | ort and two port |  |  |  |  |  |  |
| network, concepts of poles and zero                                                                             | os, property o                                                                                        | of driving point    | and transfer func   | tion. Two Port   |  |  |  |  |  |  |
| Networks, terminal pairs, relationsh                                                                            | ip of two po                                                                                          | ort variables, im   | pedance parameter   | ers, admittance  |  |  |  |  |  |  |
| parameters, transmission parameters a                                                                           | nd hybrid par                                                                                         | ameters, intercon   | nections of two p   | ort networks.    |  |  |  |  |  |  |
|                                                                                                                 | LECTURE                                                                                               | TUTORIAL            | PRACTICAL           | TOTAL            |  |  |  |  |  |  |
|                                                                                                                 | 45                                                                                                    | 15                  | 30                  | 90               |  |  |  |  |  |  |
| TEXTBOOKS                                                                                                       |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| 1. M. E. Van Valkenburg, "Netw                                                                                  | ork Analysis'                                                                                         | ', Prentice Hall, 2 | 2006.               |                  |  |  |  |  |  |  |
| 2. D. Roy Choudhury, "Network                                                                                   | s and Systems                                                                                         | s", New Age Inter   | rnational Publicati | ions, 1998.      |  |  |  |  |  |  |
| 3. W. H. Hayt and J. E. Kemmer                                                                                  | ly, "Engineeri                                                                                        | ng Circuit Analy    | sis", McGraw Hil    | l Education,     |  |  |  |  |  |  |
| 2013.                                                                                                           |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| REFERENCES                                                                                                      |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| 1. C. K. Alexander and M. N. O.                                                                                 | Sadiku, "Eleo                                                                                         | ctric Circuits", M  | cGraw Hill Educa    | tion, 2004.      |  |  |  |  |  |  |
| 2. K. V. V. Murthy and M. S. K.                                                                                 | amath, "Basic                                                                                         | Circuit Analysis    | ", Jaico Publisher  | s, 1999.         |  |  |  |  |  |  |
| 3. Department Lab Manual                                                                                        |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| 4. Sudhakar.A and Shyam Moha                                                                                    | n.S.P, "Circui                                                                                        | ts and Networks     | Analysis and Synt   | thesis", Fourth  |  |  |  |  |  |  |
| edition, Tata McGraw Hill Pu                                                                                    | olishing Com                                                                                          | pany Ltd., New D    | elhi, 2010.         |                  |  |  |  |  |  |  |
| E REFERENCES                                                                                                    |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| 1. NPTEL :http://nptel.ac.in/courses/108102042/                                                                 |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |
| 2. MOODLE : http://moodle.cecs.pdx.edu/course/view.php?id=16                                                    |                                                                                                       |                     |                     |                  |  |  |  |  |  |  |

#### **COs VERSUS POs MAPPING**

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PEO1 | PEO2 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO 1 | 3   |     |     |     |     |     |     |     |     | 1    |      | 1    | 1    | 1    |
| CO 2 | 3   |     |     |     |     |     |     |     |     | 1    |      | 1    | 2    | 1    |
| CO 3 | 3   | 2   |     |     |     |     |     |     |     | 1    | 1    | 2    | 3    | 1    |
| CO 4 | 3   | 2   |     |     | 1   |     |     |     |     | 1    | 1    | 1    | 3    | 3    |
| CO 5 | 3   | 2   |     |     | 1   |     |     |     |     | 1    | 1    | 1    | 2    | 2    |
|      | 15  | 6   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 5    | 3    | 6    | 11   | 8    |

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

#### ANALOG ELECTRONICS

| Cours | se Outcomes                                                                       | Domain                   | Level                                      |
|-------|-----------------------------------------------------------------------------------|--------------------------|--------------------------------------------|
| CO1   | Understand the characteristics of diode and analyze the rectifier circuits.       | Cognitive<br>Psychomotor | Understand<br>Analyse                      |
| CO2   | Understand the characteristics of transistor.                                     | Cognitive<br>Psychomotor | Guided Response<br>Understand<br>Mechanism |
| CO3   | Understand the concept of MOSFET and analyze the circuits and its characteristics | Cognitive<br>Psychomotor | Understand<br>Analyse<br>Mechanism         |
| CO4   | Classify and explain different types of amplifier                                 | Cognitive<br>Psychomotor | Understand<br>Mechanism                    |
| CO5   | Recall and explain linear and non-linear application of OP-Amp                    | Cognitive<br>Psychomotor | Understand<br>Mechanism                    |

| SUBCODE                                                                                                 | SUB NAME                                         | L        | Т        | Р        | С       |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|----------|----------|---------|--|--|--|--|--|
|                                                                                                         |                                                  | 3        | 0        | 2        | 4       |  |  |  |  |  |
| C:P:A = 3:0:0                                                                                           | ANALOG ELECTRONICS                               | L        | Т        | Р        | Н       |  |  |  |  |  |
|                                                                                                         |                                                  | 3        | 0        | 2        | 5       |  |  |  |  |  |
| UNIT I DIODE CIRCU                                                                                      | ITS                                              |          |          |          | 6       |  |  |  |  |  |
| P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, Zen   |                                                  |          |          |          |         |  |  |  |  |  |
| diodes, Special diodes, clamping and clipping circuits.                                                 |                                                  |          |          |          |         |  |  |  |  |  |
| LIST OF EXPERIMENT                                                                                      | ГS                                               |          |          |          |         |  |  |  |  |  |
| 1. Design of full wave rect                                                                             | ifier with and without filter.                   |          |          |          |         |  |  |  |  |  |
| 2. Design of bridge rectifie                                                                            | er circuits using with and without filter.       |          |          |          |         |  |  |  |  |  |
| 3. Conduct an experiment                                                                                | to test clipping and clamping circuits.          |          |          |          |         |  |  |  |  |  |
| UNIT II BJT CIRCUIT                                                                                     | S                                                |          |          |          | 8       |  |  |  |  |  |
| Structure and I-V characte                                                                              | eristics of a BJT; BJT as a switch. BJT as an an | nplifier | : small- | signal r | nodel,  |  |  |  |  |  |
| biasing circuits, current r                                                                             | nirror; common-emitter, common-base and co       | mmon     | collecto | or ampl  | ifiers; |  |  |  |  |  |
| Small signal equivalent cir                                                                             | cuits, high-frequency equivalent circuits.       |          |          |          |         |  |  |  |  |  |
| LIST OF EXPERIMENT                                                                                      | ſS                                               |          |          |          |         |  |  |  |  |  |
| 4. Design of BJT common                                                                                 | emitter amplifier using voltage divider bias wit | h and v  | vithout  | feedbac  | :k.     |  |  |  |  |  |
| UNIT III MOSFET CI                                                                                      | RCUITS                                           |          |          |          | 8       |  |  |  |  |  |
| MOSFET structure and I-                                                                                 | V characteristics. MOSFET as a switch. MOS       | FET as   | an amj   | plifier: | small-  |  |  |  |  |  |
| signal model and biasing                                                                                | g circuits, common-source, common-gate and       | comm     | on-drai  | n ampl   | ifiers; |  |  |  |  |  |
| small signal equivalent                                                                                 | circuits - gain, input and output impedance      | es, trai | nscondu  | ictance, | high    |  |  |  |  |  |
| frequency equivalent circu                                                                              | iit.                                             |          |          |          |         |  |  |  |  |  |
| LIST OF EXPERIMENT                                                                                      | ſS                                               |          |          |          |         |  |  |  |  |  |
| 5. Plot the drain and transfer characteristics of MOSFET.                                               |                                                  |          |          |          |         |  |  |  |  |  |
| UNIT IV DIFFERENTIAL, MULTI-STAGE AND OPERATIONAL AMPLIFIERS8                                           |                                                  |          |          |          |         |  |  |  |  |  |
| Differential amplifier; power amplifier; direct coupled multi-stage amplifier; internal structure of an |                                                  |          |          |          |         |  |  |  |  |  |
| operational amplifier, ideal op-amp, non-idealities in an op-amp (Output offset voltage, input bias     |                                                  |          |          |          |         |  |  |  |  |  |
|                                                                                                         |                                                  |          |          |          |         |  |  |  |  |  |

| current, input offset current, slew rate, gain bandwi                                                                                                                                                                                                                                                                                                                                                                                                                              | dth product)                                                                                                                                                                   |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
| LIST OF EXPERIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| 6. Conduct experiment on differential amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| UNIT V LINEAR ANDNONLINEARAPPLICA                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATIONS OF OP-                                                                                                                                                                  | AMP                                                                                                                                               | 15                                                                            |  |  |  |  |  |  |
| Idealized analysis of op-amp circuits. Inverting a                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd non-inverting                                                                                                                                                               | amplifier, differe                                                                                                                                | ential amplifier,                                                             |  |  |  |  |  |  |
| instrumentation amplifier, integrator, active filter, P, PI and PID controllers and lead/lag compensator                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| using an op-amp, voltage regulator, oscillators (Wien bridge and phase shift). Analog to Digital                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| Conversion. Hysteretic Comparator, Zero Crossing Detector, Square-wave and triangular-wave                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| generators. Precision rectifier, peak detector, Monoshot.                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| LIST OF EXPERIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| 7. Design of Phase shift and Wien bridge oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                | s using op-amp.                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| 8. Conduct experiment on Inverting, Non inverting                                                                                                                                                                                                                                                                                                                                                                                                                                  | amplifier using C                                                                                                                                                              | )p-amp.                                                                                                                                           |                                                                               |  |  |  |  |  |  |
| 9. Conduct experiment on astable and monostable r                                                                                                                                                                                                                                                                                                                                                                                                                                  | nultivibrator usin                                                                                                                                                             | g Op-amp.                                                                                                                                         |                                                                               |  |  |  |  |  |  |
| 10. Conduct experiment on integrator and different                                                                                                                                                                                                                                                                                                                                                                                                                                 | iator circuit using                                                                                                                                                            | Op-amp.                                                                                                                                           |                                                                               |  |  |  |  |  |  |
| 11. Conduct experiment on Schmitt trigger circuit u                                                                                                                                                                                                                                                                                                                                                                                                                                | using op-amp.                                                                                                                                                                  |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
| LECTURE TUTORIAL TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                |                                                                                                                                                   |                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LECTURE                                                                                                                                                                        | TUTORIAL                                                                                                                                          | TOTAL                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LECTURE<br>45                                                                                                                                                                  | TUTORIAL<br>30                                                                                                                                    | TOTAL<br>75                                                                   |  |  |  |  |  |  |
| TEXTBOOKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LECTURE<br>45                                                                                                                                                                  | TUTORIAL<br>30                                                                                                                                    | TOTAL<br>75                                                                   |  |  |  |  |  |  |
| <b>TEXTBOOKS</b><br>1. A. S. Sedra and K. C. Smith, "Microelectronic                                                                                                                                                                                                                                                                                                                                                                                                               | LECTURE<br>45<br>c Circuits", New                                                                                                                                              | TUTORIAL30York, Oxford U                                                                                                                          | TOTAL<br>75                                                                   |  |  |  |  |  |  |
| <b>TEXTBOOKS</b><br>1. A. S. Sedra and K. C. Smith, "Microelectronic<br>1998.                                                                                                                                                                                                                                                                                                                                                                                                      | LECTURE<br>45<br>c Circuits", New                                                                                                                                              | TUTORIAL30York, Oxford U                                                                                                                          | TOTAL<br>75<br>niversity Press,                                               |  |  |  |  |  |  |
| <b>TEXTBOOKS</b><br>1. A. S. Sedra and K. C. Smith, "Microelectronic<br>1998.<br>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "                                                                                                                                                                                                                                                                                                                                                   | LECTURE<br>45<br>c Circuits", New<br>'Introduction to C                                                                                                                        | TUTORIAL       30       York, Oxford U       Operational Ampli                                                                                    | TOTAL<br>75<br>niversity Press,<br>ifier theory and                           |  |  |  |  |  |  |
| <ul> <li><b>TEXTBOOKS</b></li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.</li> </ul>                                                                                                                                                                                                                                                                               | LECTURE<br>45<br>c Circuits", New<br>'Introduction to C                                                                                                                        | TUTORIAL         30         York, Oxford U         Operational Ampli                                                                              | TOTAL<br>75<br>niversity Press,<br>ifier theory and                           |  |  |  |  |  |  |
| <ul> <li>TEXTBOOKS</li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, 'applications", McGraw Hill U. S., 1992.</li> <li>3. J. Millman and A. Grabel, "Microelectronics", M</li> </ul>                                                                                                                                                                                                                          | LECTURE<br>45<br>c Circuits", New<br>'Introduction to C<br>IcGraw Hill Educ                                                                                                    | TUTORIAL         30         York, Oxford U         Operational Ample         cation, 1988.                                                        | TOTAL<br>75<br>niversity Press,<br>ifier theory and                           |  |  |  |  |  |  |
| <ul> <li>TEXTBOOKS</li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.</li> <li>3. J. Millman and A. Grabel, "Microelectronics", M<br/>REFERENCES</li> </ul>                                                                                                                                                                                                           | LECTURE<br>45<br>c Circuits", New<br>'Introduction to C<br>IcGraw Hill Educ                                                                                                    | TUTORIAL30York, Oxford UOperational Amplication, 1988.                                                                                            | TOTAL<br>75<br>niversity Press,<br>ifier theory and                           |  |  |  |  |  |  |
| <ul> <li>TEXTBOOKS</li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.</li> <li>3. J. Millman and A. Grabel, "Microelectronics", MREFERENCES</li> <li>1. P. Horowitz and W. Hill, "The Art of Electronics"</li> </ul>                                                                                                                                                  | LECTURE<br>45<br>c Circuits", New<br>'Introduction to C<br>IcGraw Hill Educ                                                                                                    | TUTORIAL         30         York, Oxford U         Operational Amplication, 1988.         iversity Press, 198                                     | TOTAL<br>75<br>niversity Press,<br>ifier theory and<br>89.                    |  |  |  |  |  |  |
| <ul> <li>TEXTBOOKS</li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.</li> <li>3. J. Millman and A. Grabel, "Microelectronics", M<br/>REFERENCES</li> <li>1. P. Horowitz and W. Hill, "The Art of Electronics".</li> <li>2. P. R. Gray, R. G. Meyer and S. Lewis, "Analysis"</li> </ul>                                                                               | LECTURE<br>45<br>c Circuits", New<br>'Introduction to C<br>IcGraw Hill Educ<br>s", Cambridge Un<br>is and Design of A                                                          | TUTORIAL         30         York, Oxford U         Operational Ampli-         cation, 1988.         iversity Press, 198         Analog Integrated | TOTAL<br>75<br>niversity Press,<br>ifier theory and<br>89.<br>Circuits", John |  |  |  |  |  |  |
| <ul> <li>TEXTBOOKS</li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.</li> <li>3. J. Millman and A. Grabel, "Microelectronics", M<br/>REFERENCES</li> <li>1. P. Horowitz and W. Hill, "The Art of Electronics</li> <li>2. P. R. Gray, R. G. Meyer and S. Lewis, "Analysi Wiley &amp; Sons, 2001.</li> </ul>                                                           | LECTURE         45         c Circuits", New         'Introduction to C         Introduction to C         AcGraw Hill Educ         s", Cambridge Units and Design of A          | TUTORIAL         30         York, Oxford U         Operational Ampli-         cation, 1988.         iversity Press, 198         Analog Integrated | TOTAL<br>75<br>niversity Press,<br>ifier theory and<br>89.<br>Circuits", John |  |  |  |  |  |  |
| <ul> <li>TEXTBOOKS</li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.</li> <li>3. J. Millman and A. Grabel, "Microelectronics", M REFERENCES</li> <li>1. P. Horowitz and W. Hill, "The Art of Electronics</li> <li>2. P. R. Gray, R. G. Meyer and S. Lewis, "Analysi Wiley &amp; Sons, 2001.</li> <li>3. Department Lab Manual.</li> </ul>                            | LECTURE         45         c Circuits", New         'Introduction to C         IcGraw Hill Educ         s", Cambridge Units and Design of A                                    | TUTORIAL         30         York, Oxford U         Operational Ampli-         cation, 1988.         iversity Press, 198         Analog Integrated | TOTAL<br>75<br>niversity Press,<br>ifier theory and<br>89.<br>Circuits", John |  |  |  |  |  |  |
| <ul> <li>TEXTBOOKS</li> <li>1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.</li> <li>2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.</li> <li>3. J. Millman and A. Grabel, "Microelectronics", M<br/>REFERENCES</li> <li>1. P. Horowitz and W. Hill, "The Art of Electronics"</li> <li>2. P. R. Gray, R. G. Meyer and S. Lewis, "Analysi Wiley &amp; Sons, 2001.</li> <li>3. Department Lab Manual.</li> <li>E REFERENCES</li> </ul> | LECTURE<br>45<br>c Circuits", New<br>Introduction to C<br>IcGraw Hill Educ<br>s", Cambridge Un<br>is and Design of A                                                           | TUTORIAL         30         York, Oxford U         Operational Ampli-         cation, 1988.         iversity Press, 198         Analog Integrated | TOTAL<br>75<br>niversity Press,<br>ifier theory and<br>89.<br>Circuits", John |  |  |  |  |  |  |
| <b>TEXTBOOKS</b> 1. A. S. Sedra and K. C. Smith, "Microelectronic 1998.         2. J. V. Wait, L. P. Huelsman and G. A. Korn, "applications", McGraw Hill U. S., 1992.         3. J. Millman and A. Grabel, "Microelectronics", M <b>REFERENCES</b> 1. P. Horowitz and W. Hill, "The Art of Electronics"         2. P. R. Gray, R. G. Meyer and S. Lewis, "Analysi Wiley & Sons, 2001.         3. Department Lab Manual. <b>E REFERENCES</b> 1. www.nptel.ac.in.                   | LECTURE         45         c Circuits", New         'Introduction to C         'Introduction to C         IcGraw Hill Educ         s", Cambridge Un         is and Design of A | TUTORIAL         30         York, Oxford U         Operational Ampli-         cation, 1988.         iversity Press, 198         Analog Integrated | TOTAL<br>75<br>niversity Press,<br>ifier theory and<br>89.<br>Circuits", John |  |  |  |  |  |  |

#### **COs VERSUS POs MAPPING**

|             | PO1 | PO2   | PO3     | PO4  | PO5   | PO6     | PO7  | PO8   | PO9    | PO10     | PO11   | PO12    | PEO1 | PEO2 |
|-------------|-----|-------|---------|------|-------|---------|------|-------|--------|----------|--------|---------|------|------|
| CO 1        | 3   |       |         |      |       |         |      |       |        | 1        |        | 1       |      |      |
| CO 2        | 3   |       |         |      |       |         |      |       |        | 1        |        | 1       |      |      |
| CO 3        | 3   | 2     |         |      |       |         |      |       |        | 1        | 1      | 2       |      |      |
| <b>CO 4</b> | 2   | 2     |         |      | 1     |         |      |       |        | 1        | 1      | 1       |      |      |
| CO 5        | 3   | 1     |         |      | 2     |         |      |       |        | 1        | 1      | 1       |      |      |
|             | 14  | 5     | 0       | 0    | 3     | 0       | 0    | 0     | 0      | 5        | 3      | 6       |      |      |
|             |     | 0 –No | relatio | on 1 | - Low | relatio | on 2 | - Med | ium re | lation 3 | – High | Relatio | n    |      |

#### **ELECTRICAL MACHINES-I**

| Course O | utcomes                                                     | Domain      | Level         |
|----------|-------------------------------------------------------------|-------------|---------------|
| CO1      | Understand the operation of de machines                     | Cognitive   | Understand    |
| COI      | Onderstand the operation of de machines.                    | Psychomotor | Perception    |
|          |                                                             | Comitivo    | Understand    |
| CO2      | Understand the winding concepts of dc machine.              | Psychomotor | Complex Overt |
|          |                                                             | rsychomotor | Response      |
| CO3      | Understand the motoring and generating concepts of dc       | Cognitive   | Understand    |
| 003      | machine.                                                    | Psychomotor | Set           |
| CO4      | Analyza single phase and three phase transformers sirguits  | Cognitive   | Analyse       |
| 004      | Anaryse single phase and three phase transformers circuits. | Psychomotor | Set           |
| CO5      | Understand the various loss in magnetic circuits            | Cognitive   | Understand    |
| 0.05     | Understand the various loss in magnetic clicuits            | Psychomotor | Set           |

| SUB. CODE          | SUB NAME                       | L | Т | Р                | С  |
|--------------------|--------------------------------|---|---|------------------|----|
|                    |                                | 3 | 0 | 2                | 4  |
| C:P:A = 3:0:0      | <b>ELECTRICAL MACHINES - I</b> | L | Т | Р                | Η  |
|                    |                                | 3 | 0 | P<br>2<br>P<br>2 | 5  |
| UNIT I DC MACHINES | · INTRODUCTION                 |   |   |                  | 09 |

Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air gap and armature core, visualization of magnetic field produced by the field winding excitation with armature winding open, air gap flux density distribution, flux per pole, induced EMF in an armature coil.

#### LIST OF EXPERIMENTS

1. Study of D.C. Motor Starters

#### **UNIT II DC MACHINES – ARMATURE AND WINDING**

Armature winding and commutation - Elementary armature coil and commutator, lap and wave windings, construction of commutator, linear commutation Derivation of back EMF equation, armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction.

#### **UNIT III DC MACHINE - MOTORING AND GENERATION**

Armature circuit equation for motoring and generation, Types of field excitations – separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction, voltage build-up in a shunt generator, critical field resistance and critical speed. V-I characteristics and torque-speed characteristics of separately excited, shunt and series motors. Speed control through armature voltage. Losses, load testing and back-to-back testing of DC machines

#### LIST OF EXPERIMENTS

2. Open Circuit Characteristics (OCC) and load Characteristics of D.C self-excited generator.

- 3. Load characteristics of D.C shunt generator
- 4. Load characteristics of D.C. shunt motor
- 5. Load characteristics of D.C series motor

6. Speed control of D.C shunt motor

#### UNIT IV TRANSFORMERS AND TEST

Principle, construction and operation of single-phase transformers, equivalent circuit, phasor diagram, voltage regulation, transformer - construction, types of connection and their comparative features, Parallel operation of single-phase and three-phase transformers, Phase conversion - Scott connection, three-phase to six-phase conversion, Tap-changing transformers. losses and efficiency Testing - open circuit and short circuit tests, polarity test, back-to-back test- separation of hysteresis and eddy current

Board of studies in Electrical and Electronics Engineering (With effect from 26.6.2018 onwards) Page 46

- 09
- 08

11

#### losses

### LIST OF EXPERIMENTS

Load test on single-phase transformer.

8. Open circuit and short circuit tests on single phase transformer.

#### UNIT V AUTOTRANSFORMERS

Autotransformers - construction, principle, applications and comparison with two winding transformer, Magnetizing current, effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current

| LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|---------|----------|-----------|-------|
| 45      | 0        | 30        | 75    |

#### TEXTBOOKS

A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.
 A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

#### REFERENCES

1. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

2. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

3. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

#### List of Experiments

- 1. Study of D.C. Motor Starters. 3
- 2. Open Circuit Characteristics (OCC) and load Characteristics of D.C self-excited generator. 3
- 3. Load characteristics of D.C shunt generator 3
- 4. Load characteristics of D.C. shunt motor. 3
- 5. Load characteristics of D.C series motor. 3
- 6. Speed control of D.C shunt motor. 3
- 7. Load test on single-phase transformer. 4
- 8. Open circuit and short circuit tests on single phase transformer.4

**Total Hours: 30** 

08

#### **COs VERSUS POs MAPPING**

|             | PO  | PO      | PO    | PO    | PO      | PO   | PO    | PO    | PO      | PO    | PO   | PO      | PE | PE |
|-------------|-----|---------|-------|-------|---------|------|-------|-------|---------|-------|------|---------|----|----|
|             | 1   | 2       | 3     | 4     | 5       | 6    | 7     | 8     | 9       | 10    | 11   | 12      | 01 | 02 |
| CO 1        | 3   | 2       | 2     | 2     | 1       |      |       |       | 1       |       |      | 1       | 1  | 0  |
| CO 2        | 3   | -       | 2     | 1     |         |      |       | 1     |         |       |      | 1       |    | 1  |
| CO 3        | 3   |         |       | 1     |         |      |       | 1     |         |       | 1    |         |    | 1  |
| <b>CO 4</b> | 3   | 2       | 2     | 2     | 1       |      | 1     |       |         | 1     |      | 1       |    | 1  |
| CO 5        | 3   |         |       | 1     |         |      |       |       |         | 1     |      |         |    | 1  |
|             | 15  | 4       | 6     | 7     | 2       |      | 1     | 2     | 1       | 2     | 1    | 3       | 1  | 4  |
|             | 0 - | No rela | ation | 1 - I | ow rela | tion | 2 - M | edium | relatio | n 3 - | High | Relatio | n  |    |

### **ELECTROMAGNETIC FIELDS**

| Cours | se Outcomes                                                                                                                                                       | Domain    | Level                        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| CO1   | Cog(R) Cog(U): To understand the basics of vector and outline different coordinate system.                                                                        | Cognitive | Remembering<br>Understanding |
| CO2   | Cog(U) :To understand the concept of static electric field for simple configuration using gauss and Coulombs law.                                                 | Cognitive | Understanding                |
| CO3   | Cog(R): Define the knowledge of electrostatics using, boundary conditions, Poissons and Laplace equation.                                                         | Cognitive | Understanding                |
| CO4   | Cog(R) Cog(U): Recall the magnetic field configuration<br>using Different laws and outline time varying electric and<br>magnetic fields using Maxwell's equation. | Cognitive | Remembering<br>Understanding |
| CO5   | Cog(U) : Recall the concept of magnetization and magnetic field configuration using boundary condition.                                                           | Cognitive | Understanding                |

| SUB. CODE                                                                                              | SUB NAME                                             | L        | Т       | Р      | С         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|---------|--------|-----------|--|--|--|--|
|                                                                                                        |                                                      | 3        | 1       | 0      | 4         |  |  |  |  |
| <b>C:P:A = 3:0:0</b>                                                                                   | ELECTROMAGNETIC FIELDS                               | L        | Т       | Р      | Н         |  |  |  |  |
|                                                                                                        |                                                      | 3        | 1       | 0      | 4         |  |  |  |  |
| UNIT I REVIEWOFVECTOR                                                                                  | CALCULUS                                             |          |         |        | 6+3       |  |  |  |  |
| Vector algebra-addition, subtraction                                                                   | on, components of vectors, scalar and vector mu      | ltiplic  | ations  | , trip | le        |  |  |  |  |
| products, three orthogonal coordi                                                                      | inate systems (rectangular, cylindrical and sp       | herica   | l). Ve  | ctor   | calculus  |  |  |  |  |
| differentiation, partial differentiat                                                                  | ion, integration, vector operator del, gradient,     | diverg   | gence   | 8      | and curl; |  |  |  |  |
| integral theorems of vectors. Conv                                                                     | ersion of a vector from one coordinate system to     | o anot   | her.    |        |           |  |  |  |  |
| UNIT II STATIC ELECTRIC F                                                                              | IELD                                                 |          |         |        | 9+3       |  |  |  |  |
| Coulomb's law, Electric field inte                                                                     | ensity, Electrical field due to point charges. Li    | ine, S   | urface  | and    | Volume    |  |  |  |  |
| charge distributions. Gauss law                                                                        | and its applications. Absolute Electric potent       | ial, P   | otenti  | al di  | fference, |  |  |  |  |
| Calculation of potential difference                                                                    | es for different configurations. Electric dipole,    | Electr   | ostati  | c En   | ergy and  |  |  |  |  |
| Energy density.                                                                                        |                                                      |          |         |        |           |  |  |  |  |
| UNIT III CONDUCTORS, DIELECTRICS AND CAPACITANCE 9+3                                                   |                                                      |          |         |        |           |  |  |  |  |
| Current and current density, Ohn                                                                       | ns Law in Point form, Continuity of current,         | Boun     | dary    | cond   | itions of |  |  |  |  |
| perfect dielectric materials. Permi                                                                    | ittivity of dielectric materials, Capacitance, Ca    | apacita  | ance c  | of a t | wo wire   |  |  |  |  |
| line, Poisson's equation, Laplace'                                                                     | s equation, Solution of Laplace and Poisson's        | equat    | ion, A  | Applio | cation of |  |  |  |  |
| Laplace's and Poisson's equations                                                                      |                                                      |          |         |        |           |  |  |  |  |
| UNIT IV STATIC MAGNETIC                                                                                | FIELDS, TIME VARYING FIELDS AND                      | MAX      | WELI    | L'S    | 9+3       |  |  |  |  |
| EQUATIONS                                                                                              |                                                      |          |         |        |           |  |  |  |  |
| Biot-Savart Law, Ampere Law, M                                                                         | Magnetic flux and magnetic flux density, Scal        | lar an   | d Vec   | tor N  | Aagnetic  |  |  |  |  |
| potentials. Steady magnetic fie                                                                        | lds produced by current carrying conduct             | ors. I   | Farada  | y's    | law for   |  |  |  |  |
| Electromagnetic induction, Displa                                                                      | acement current, Point form of Maxwell's ec          | uation   | ı, Inte | gral   | form of   |  |  |  |  |
| Maxwell's equations, Motional E                                                                        | lectromotive forces. Boundary Condit ions. Fo        | rce or   | n a me  | oving  | g charge, |  |  |  |  |
| Force on a differential current ele                                                                    | ement, Force between differential current elem       | ents, l  | Nature  | e of i | nagnetic  |  |  |  |  |
| materials, Magnetization and perm                                                                      | eability, Magnetic circuits, inductances and mu      | tual in  | ducta   | nces.  | _         |  |  |  |  |
| UNIT V ELECTROMAGNETIO                                                                                 | CWAVES                                               |          |         |        | 9+3       |  |  |  |  |
| Derivation of Wave Equation, Uni                                                                       | iform Plane Waves, Maxwell's equation in Pha         | sor fo   | rm, W   | /ave   | equation  |  |  |  |  |
| in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting |                                                      |          |         |        |           |  |  |  |  |
|                                                                                                        |                                                      |          |         |        |           |  |  |  |  |
| Board of studies in Electrica                                                                          | l and Electronics Engineering (With effect from 26.6 | 5.2018 o | nwards  | ) Pag  | e 48      |  |  |  |  |

| medium, Plane waves in lossy dielectrics, Propagation in go                              | od conductors,    | Skin effect. Poy  | nting theorem.  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------|--|--|--|--|--|
|                                                                                          | LECTURE           | TUTORIAL          | TOTAL           |  |  |  |  |  |
| 45 15 60<br>TEXTROOKS                                                                    |                   |                   |                 |  |  |  |  |  |
| TEXTBOOKS                                                                                |                   |                   |                 |  |  |  |  |  |
| 1. M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Publication, 2014. |                   |                   |                 |  |  |  |  |  |
| 2. A. Pramanik, "Electromagnetism - Theory and applications", PHI Learning Pvt. Ltd, New |                   |                   |                 |  |  |  |  |  |
| Delhi, 2009.                                                                             |                   |                   |                 |  |  |  |  |  |
| 3. A. Pramanik, "Electromagnetism-Problems with solution", Prentice Hall India, 2012.    |                   |                   |                 |  |  |  |  |  |
| 4. G. W. Carter, "The electromagnetic field in its engineerin                            | ig aspects", Loi  | ngmans, 1954.     |                 |  |  |  |  |  |
| REFERENCES                                                                               |                   |                   |                 |  |  |  |  |  |
| 1. W. J. Duffin, "Electricity and Magnetism", McGraw Hi                                  | ll Publication, 1 | 1980.             |                 |  |  |  |  |  |
| 2. W. J. Duffin, "Advanced Electricity and Magnetism", Mo                                | Graw Hill, 196    | 58.               |                 |  |  |  |  |  |
| 3. E. G. Cullwick, "The Fundamentals of Electromagnetism                                 | ", Cambridge U    | University Press, | 1966.           |  |  |  |  |  |
| 4. B. D. Popovic, "Introductory Engineering Electromagnet                                | ics". Addison-V   | Wesley Education  | nal Publishers. |  |  |  |  |  |
| International Edition, 1971.                                                             |                   |                   |                 |  |  |  |  |  |
| 5. W. Hayt, "Engineering Electromagnetics", McGraw Hill Education, 2012.                 |                   |                   |                 |  |  |  |  |  |
| REFERENCES                                                                               |                   |                   |                 |  |  |  |  |  |
|                                                                                          |                   |                   |                 |  |  |  |  |  |

<u>1.</u> NPTEL :http://nptel.ac.in/courses

#### **COs VERSUS POs MAPPING**

|         | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|
| CO1     | 2       | 2       | -       | 1       | -       | -       | -       | -       | -       | 1        | -        | 1        | 1        | 1        |
| CO2     | 1       | 2       | -       | 1       | -       | -       | -       | -       | -       | -        | 1        | -        | 2        | 1        |
| CO3     | 1       | 2       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 1        | 1        | 2        |
| CO4     | 1       | 3       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 2        | 2        |
| CO5     | 1       | 2       | 1       | -       | -       | -       | -       |         | -       | -        | -        | 1        | 1        | 1        |
| Total   | 6       | 11      | 1       | 3       | 0       | 0       | 0       | 0       | 0       | 1        | 1        | 3        | 7        | 7        |
| Scaling | 2       | 3       | 1       | 1       | 0       | 0       | 0       | 0       | 0       | 1        | 1        | 1        | 2        | 2        |

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

#### TRANSMISSION AND DISTRIBUTION

|            | COURSE OUTCOMES                                                                                                                                                             | DOMAIN    | LEVEL                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|
| CO1        | <b>Explain</b> the major components of Transmission and Distribution Systems (TDS). <b>Classify</b> different types of single and three phase transmission line parameters. | Cognitive | Understanding<br>Understanding |
| CO2        | <b>Outline</b> the types of transmission line efficiency calculations and its performance                                                                                   | Cognitive | Understanding                  |
| CO3        | <b>Explain</b> the different types of insulators and <b>solve</b> for stress and sag in overhead lines.                                                                     | Cognitive | Understanding<br>Applying      |
| <b>CO4</b> | Interpret different type's underground cables.                                                                                                                              | Cognitive | Understanding                  |
| CO5        | <b>Summarize</b> the latest technologies in the field of distribution systems.                                                                                              | Cognitive | Understanding                  |

| SUB. CODE                                                                                           | SUB NA                                                                   | ME              |          | L       | Т        | Р         | С       |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------|----------|---------|----------|-----------|---------|--|--|--|
|                                                                                                     |                                                                          |                 |          | 3       | 0        | 0         | 3       |  |  |  |
| C:P:A = 3:0:0                                                                                       | TRANSMISSION AN                                                          | D DISTRIBUT     | ΓΙΟΝ     | L       | Т        | Р         | Η       |  |  |  |
|                                                                                                     |                                                                          |                 |          | 3       | 0        | 0         | 3       |  |  |  |
| UNIT I TRANSMISSIO                                                                                  | N LINE PARAMETERS                                                        | S               |          |         |          |           | 09      |  |  |  |
| Structure of electric power                                                                         | r system: Various levels s                                               | uch as generati | on, tran | smissic | on and c | listribut | tion; – |  |  |  |
| Resistance, Inductance an                                                                           | d Capacitance calculation                                                | ns – Single-ph  | ase and  | three-p | phase li | nes – c   | louble  |  |  |  |
| circuit lines – effect of ear                                                                       | th on transmission line ca                                               | pacitance.      |          |         |          |           |         |  |  |  |
| UNIT II PERFORMAN                                                                                   | CE OF TRANSMISSIO                                                        | N LINES         |          |         |          |           | 09      |  |  |  |
| Regulation and efficiency                                                                           | iciency – Tuned power lines, Power flow through a transmission line – Po |                 |          |         |          |           |         |  |  |  |
| circle diagrams, Introduction to Transmission loss and Formation of corona - critical voltages -    |                                                                          |                 |          |         |          |           |         |  |  |  |
| effect on line performance – travelling waveform phenomena.                                         |                                                                          |                 |          |         |          |           |         |  |  |  |
| UNIT III MECHANICA                                                                                  | <b>AL DESIGN OF OVERI</b>                                                | HEAD LINES      |          |         |          |           | 09      |  |  |  |
| Line supports - Insulator                                                                           | s, Voltage distribution in                                               | n suspension in | nsulator | s – Tes | sting of | f insula  | tors –  |  |  |  |
| string efficiency – Stress a                                                                        | nd sag calculation – effect                                              | cts of wind and | ice load | ling.   |          |           |         |  |  |  |
| UNIT IV UNDERGROU                                                                                   | IND CABLES                                                               |                 |          |         |          | (         | 09      |  |  |  |
| Comparison with overhea                                                                             | ad line – Types of cable                                                 | es – insulation | resista  | ance –  | potenti  | al grad   | ient –  |  |  |  |
| capacitance of single-core                                                                          | and three-core cables.                                                   |                 |          |         | -        | -         |         |  |  |  |
|                                                                                                     |                                                                          |                 |          |         |          |           | 0.0     |  |  |  |
| UNIT V DISTRIBUTIO                                                                                  | NSYSTEM                                                                  |                 |          |         |          |           | 09      |  |  |  |
| General aspects – Kelvin'                                                                           | s Law – A.C. distributior                                                | n – Single-phas | e and t  | hree ph | ase – T  | Techniq   | ues of  |  |  |  |
| voltage control and power factor improvement – Introduction to Distribution loss – Recent trends in |                                                                          |                 |          |         |          |           |         |  |  |  |
| transmission and distribut                                                                          | ion systems                                                              |                 |          |         |          |           |         |  |  |  |
|                                                                                                     |                                                                          | LECTURE         | TUT      | DRIAL   |          | TOTA      | L       |  |  |  |
|                                                                                                     |                                                                          | 45              |          | 0       |          | 45        |         |  |  |  |

#### **TEXTBOOKS**

- 1. D.P.Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw–Hill, 2<sup>nd</sup>Edition, 2008.
- 2. B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2003.
- 3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall India Pvt. Ltd, 2002.

#### REFERENCES

- 1. Luces M.Fualkenberry ,Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 1996.
- 2. Hadisaddak, 'Power System Analysis,' Tata McGraw Hill Publishing Company',2003
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi
- 4. Tamil Nadu Electricity Board Handbook', 2012.

#### E REFERENCES

1. NPTEL, Power System Generation, Transmission and Distribution Prof. D. P. Kothari Center for Energy Studies Indian Institute of Technology, Delhi.

#### **COs VERSUS POs MAPPING**

|         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1     | 1   | 3   |     |     |     |     |     |     |     | 1    |      | 2    | 2    | 1    |
| CO2     | 1   | 3   | 1   |     | 1   |     |     |     |     |      |      | 1    | 3    | 1    |
| CO3     | 1   |     |     | 1   | 1   |     |     |     |     | 1    |      |      | 2    | 1    |
| CO4     | 1   | 2   |     |     |     |     |     |     |     |      | 1    | 1    | 2    | 1    |
| CO5     | 1   | 2   |     |     |     |     |     |     |     |      |      | 1    | 2    | 1    |
| Total   | 5   | 10  | 1   | 1   | 2   | 0   | 0   | 0   | 0   | 2    | 1    | 5    | 11   | 5    |
| Scaling | 2   | 3   | 1   | 1   | 1   | 0   | 0   | 0   | 0   | 1    | 1    | 2    | 3    | 2    |

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

### SEMESTER IV DIGITAL ELECTRONICS

| COU | RSE OUTCOMES                                                                                                                                                                                   | DOMAIN                   | LEVEL                               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|
| CO1 | Cog (U): To Understand numerical values in various<br>number systems and show number conversions between<br>different number Systems.                                                          | Cognitive<br>Psychomotor | Understanding<br>Guided<br>Response |
| CO2 | Cog (Anl): To Analyze Boolean functions and<br>minimization techniques using k –maps and postulates and<br>theorems of Boolean Algebra, minimization of Boolean<br>functions using basic laws. | Cognitive<br>Psychomotor | Analyze<br>Perception               |
| CO3 | Cog (App.): To Apply Logic gates and their applications<br>and construct the simple adders and sub tractors using logic<br>gates.                                                              | Cognitive<br>Psychomotor | Apply<br>Mechanism                  |
| CO4 | Cog (U) : To Understand the process of Analog to Digital conversion and its applications.                                                                                                      | Cognitive<br>Psychomotor | Understanding<br>Mechanism          |
| CO5 | Cog (U) : To Understand the process of Digital to Analog conversion and its applications.                                                                                                      | Cognitive<br>Psychomotor | Understanding<br>Mechanism          |

| SUB. CODE                                                                                          | SUB NAME                                                 | L       | Т     | Р      | С      |  |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------|-------|--------|--------|--|--|--|--|
|                                                                                                    |                                                          | 3       | 0     | 2      | 4      |  |  |  |  |
| C:P:A = 3:0:0                                                                                      | DIGITAL ELECTRONICS                                      | L       | Т     | Р      | СН     |  |  |  |  |
|                                                                                                    |                                                          | 3       | 0     | 2      | 5      |  |  |  |  |
| UNIT I FUNDAMENTA                                                                                  | LS OF DIGITAL SYSTEMS AND LOGIC FAM                      | ILIE    | S     |        | 09     |  |  |  |  |
| Digital signals, digital ci                                                                        | ircuits, AND, OR, NOT, NAND, NOR and Exclu               | usive-  | OR    | opera  | tions, |  |  |  |  |
| Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecima      |                                                          |         |       |        |        |  |  |  |  |
| number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting an       |                                                          |         |       |        |        |  |  |  |  |
| correcting codes, characte                                                                         | ristics of digital ICs, digital logic families.          |         |       |        |        |  |  |  |  |
| LIST OF EXPERIMEN                                                                                  | TS                                                       |         |       |        |        |  |  |  |  |
| 1. Verification and study of                                                                       | of logic gates.                                          |         |       |        |        |  |  |  |  |
| 2. Binary to Gray and Gra                                                                          | y to binary code converters.                             |         |       |        |        |  |  |  |  |
| 3. Excess -3 to BCD and y                                                                          | vice-versa code converters.                              |         |       |        |        |  |  |  |  |
| UNIT II COMBINATIO                                                                                 | NAL DIGITAL CIRCUITS                                     |         |       |        | 09     |  |  |  |  |
| Standard representation                                                                            | for logic functions, K-map representation, and sin       | nplifi  | catio | n of   | logic  |  |  |  |  |
| functions using K-map,                                                                             | minimization of logical functions. Don't care con        | ditior  | ns, N | lultip | lexer, |  |  |  |  |
| De-Multiplexer/Decoders,                                                                           | , Adders, Subtractors, ALU, elementary ALU desigr        | ı, pop  | ular  | MSI o  | chips, |  |  |  |  |
| digital comparator, parity                                                                         | v checker/generator, code converters, priority enco      | oders,  | deco  | oders  | Q-M    |  |  |  |  |
| method of function realization                                                                     | ation.                                                   |         |       |        |        |  |  |  |  |
| LIST OF EXPERIMEN                                                                                  | TS                                                       |         |       |        |        |  |  |  |  |
| 4. Implementation and ver                                                                          | fification of Multiplexers and Demultiplexer using lo    | gic ga  | tes.  |        |        |  |  |  |  |
| 5. Implementation and verification of Encoders and Decoders using logic gates.                     |                                                          |         |       |        |        |  |  |  |  |
| UNIT III SEQUENTIA                                                                                 | L CIRCUITS AND SYSTEMS                                   |         |       |        | 09     |  |  |  |  |
| A 1-bit memory, the cir                                                                            | rcuit properties of Bistable latch, JK, SR, D and        | l T t   | ypes  | flip-1 | flops, |  |  |  |  |
| applications of flip-flops, shift registers, applications of shift registers, Asynchronous counter |                                                          |         |       |        |        |  |  |  |  |
| synchronous counters des                                                                           | ign using flip flops, special counter IC's, applications | s of co | ounte | rs.    |        |  |  |  |  |

#### LIST OF EXPERIMENTS

6. Design and verify operation of Half / Full adder.

7. Design and verify operation of Half/Full sub tractor.

#### UNIT IV A/D AND D/A CONVERTERS

Digital to analog converters: weighted resistor/converter, R-2R Ladder DAC, specifications for D/A converters, examples of DAC lCs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator ADC, successive approximation ADC, specifications of ADC, example of ADC ICs.

#### LIST OF EXPERIMENTS

8. Verification of state tables of RS, JK, T and D flip flops using NAND and NOR gates.

UNIT V SEMICONDUCTOR MEMORIES AND PROGRAMMABLE LOGIC 09 DEVICES

Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, ROM, RAM, content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, PLA, PAL, CPLDS, and FPGA.

#### LIST OF EXPERIMENTS

9. Shift registers and Counters.

| LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|---------|----------|-----------|-------|
| 45      | 0        | 30        | 75    |

#### TEXTBOOKS

1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.

- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.
- 3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

#### REFERENCES

- 1. Taub and Schilling, 'Digital Integrated Circuits', McGraw Hill, 2002.
- 2. Samuel C. Lee "Digital Circuits and Logic Designs" Prentice Hall of India; 2000.
- 3. Fletcher, W.I., 'An Engineering Approach to Digital Design', Prentice Hall of India, 2002.
- 4. Anand Kumar, Fundamental of Digital circuits, PHI 2003.
- 5. Department Lab Manual.
- 6. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.

#### **E REFERENCES**

- 1. NPTEL, Digital Logic Circuits, Prof. S.Srinivasan, IIT Madras.
- 2. NPTEL, Digital Logic Circuits, Prof. D. Roychoudhury, IIT Kharagpur.

#### COs VERSUS POS MAPPING

|             | PO | PEO | PEO |
|-------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|
|             | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   |
| CO 1        | 2  | 1  | 3  | -  | -  | 1  | 1  | 1  | -  | 1  | -  | 2  | 2   | 1   |
| CO 2        | 3  | 2  | 1  | -  | -  | 2  | 0  | 2  | 1  | -  | -  | 2  | 1   | 2   |
| CO 3        | 2  | 2  | 1  | -  | -  | 1  | 2  | 2  | 1  | 1  | -  | 1  | 2   | 2   |
| <b>CO 4</b> | 2  | 2  | 3  | -  | -  | 1  | 1  | 1  | -  | -  | 1  | 1  | 1   | 2   |
| CO 5        | 3  | 2  | 2  | -  | -  | 0  | 1  | 1  | 1  | 1  | 1  | 2  | 2   | 2   |
| Total       | 12 | 9  | 10 | -  | -  | 5  | 5  | 7  | 3  | 3  | 2  | 8  | 8   | 9   |

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

#### **POWER ELECTRONICS**

| Cours      | se Outcomes                                                   | Domain      | Level         |  |
|------------|---------------------------------------------------------------|-------------|---------------|--|
| COI        | To Understand the structure, operation and characteristics of | Cognitive   | Understanding |  |
| COI        | power switching devices.                                      | Psychomotor | Response      |  |
| CO2        | Determine the operation, characteristics and performance      | Cognitive   | Understanding |  |
| 02         | parameters of controlled rectifiers.                          | Psychomotor | Mechanism     |  |
| <b>CO3</b> | Analysis the operation of DC DC chappers                      | Cognitive   | Analyzing     |  |
| 005        | Analysis the operation of DC - DC choppers.                   | Psychomotor | Mechanism     |  |
| CO4        | Analysis the operation of various inverters and infer the     | Cognitive   | Analyzing     |  |
| 04         | suitable PWM techniques.                                      | Psychomotor | Mechanism     |  |
| COS        | To Understand the concept of various types of AC voltage      | Cognitive   | Understanding |  |
| 003        | controllers.                                                  | Psychomotor | Mechanism     |  |

| SUB. CODE                      | SUB. NAME         | L | Т | Р | С |  |  |  |  |
|--------------------------------|-------------------|---|---|---|---|--|--|--|--|
|                                |                   | 3 | 0 | 2 | 4 |  |  |  |  |
| C:P:A                          | POWER ELECTRONICS | L | Т | Р | Η |  |  |  |  |
| 3:0:0                          |                   | 3 | 0 | 2 | 5 |  |  |  |  |
| UNIT I POWER SWITCHING DEVICES |                   |   |   |   |   |  |  |  |  |
|                                |                   |   |   | 0 |   |  |  |  |  |

Review on Semiconductor devices – I-V characteristics and Switching Characteristics of power Diodes, SCR, TRIAC, power BJT, power MOSFET and IGBT. Triggering and Commutation Circuits.

#### LIST OF EXPERIMENTS

1. Characteristics of SCR.

2. Characteristics of MOSFET.

3. Characteristics of IGBT.

#### UNIT II THYRISTOR RECTIFIERS

Single phase half-wave and full-wave thyristor rectifiers – Single phase full-bridge thyristor rectifier with R-load and highly inductive load – Three phase full-bridge thyristor rectifier with R-load and highly inductive load.

09

09

09

09

#### LIST OF EXPERIMENTS

4. Single phase fully controlled rectifier with R, RL load.

#### UNIT III DC TO DC CHOPPERS

Types of Choppers, Class A to E, step-up and step-down choppers – Analysis of Voltage, Current and Load commutated choppers –Introduction to Resonant converters

#### LIST OF EXPERIMENTS

5. BUCK- BOOST converter using MOSFET.

6. IGBT based choppers.

UNIT IV INVERTERS

Single phase, Three phase voltage source inverters (Both 120° and 180° mode of conductions) – Bipolar sinusoidal modulation and unipolar sinusoidal modulation, Modulation Index - PWM Techniques- Current Source Inverters.

#### LIST OF EXPERIMENTS

7. Single phase IGBT PWM inverter.

8. Series Inverter/ Parallel Inverter.

#### UNIT VAC VOLTAGE CONTROLLERS

Single-phase and three phase AC voltage controllers -. Multi-stage sequence control - step-up and

step-down cycloconverter - Single phase to single phase and Single phase to Three phase cycloconverters.

#### LIST OF EXPERIMENTS

9. Single phase AC voltage controller using SCR / TRIAC.

10. Single phase Cycloconverter.

11. Mini project: Design of basic power converter circuits.

| r j · · · · · · · · |         |          |           |       |
|---------------------|---------|----------|-----------|-------|
|                     | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|                     | 45      | 0        | 30        | 75    |
| TEXTBOOKS:          |         |          |           |       |

- 1. Rashid, M.H., 'Power Electronics: Circuits, Devices and Applications', Pearson Education India, 2009.
- 2. Singh, M.D and Kanchandani, 'Power Electronics', Tata McGraw Hill & Hill publication Company Ltd New Delhi, 2009.
- 3. Bimbhra, P.S, 'Power Electronics', Khanna Publishers, 2007.
- William 4. Ned Mohan. Tore M. Undeland and P.Robbins. 'Power Electronics: Converters, Applications and Design', New Jersey, John Wiley and Sons, 2007.

#### **REFERENCES:**

- 1. Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., 'Thyristorised Power Controllers', Wiley Eastern Limited, 1986.
- 2. Lander, W., 'Power Electronics', McGraw Hill and Company, Third Edition, 2009.
- 3. Sen.P.C., 'Power Electronics', Tata McGraw-Hill Publishing Co. Ltd., New Delhi, 2005.
- 4. Joseph Vithayathil, 'Power Electronics', McGraw-Hill New York, 1996.
- 5. Erickson, R.W and Maksimovic, D., 'Fundamentals of Power Electronics', Springer Science & Business Media, 2007.
- 6. Umanand, L., 'Power Electronics: Essentials and Applications', Wiley India, 2009.

#### **E REFERENCES:**

- 1. Lecture Series on Power Electronics by Prof. B.G. Fernandes, Department of Electrical Engineering, IIT Bombay.
- 2. http://www.nptel.ac.in/courses/108105066/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | <b>PS01</b> | PSO2 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|-------------|------|
| CO 1        | 3   | 2   | 1   | 0   | 0   | 1   | 3          | 0   | 0   | 0    | 0    | 1    | 3           | 1    |
| CO 2        | 2   | 1   | 2   | 1   | 0   | 0   | 1          | 0   | 0   | 0    | 0    | 0    | 2           | 2    |
| CO 3        | 3   | 1   | 1   | 0   | 0   | 0   | 0          | 0   | 0   | 0    | 0    | 0    | 1           | 2    |
| <b>CO 4</b> | 1   | 3   | 2   | 0   | 0   | 1   | 0          | 0   | 0   | 0    | 0    | 0    | 2           | 1    |
| CO 5        | 1   | 2   | 3   | 1   | 3   | 0   | 1          | 1   | 0   | 0    | 0    | 0    | 3           | 2    |
| Total       | 10  | 9   | 9   | 2   | 3   | 2   | 5          | 1   | 0   | 0    | 0    | 1    | 11          | 8    |

COS VERSUS POS MAPPING

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

#### **ELECTRICAL MACHINES – II**

| Course Outo | comes                                                                                                                                                                                    | Domain                   | Level                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|
| CO1         | To Understand the fundamentals of different types of slots<br>and windings used for AC machines.                                                                                         | Cognitive<br>Psychomotor | Understanding<br>Mechanism |
| CO2         | To Understand the concepts of pulsating and revolving magnetic fields.                                                                                                                   | Cognitive<br>Psychomotor | Understanding<br>Mechanism |
| CO3         | To Understand the operation of induction machines, ttorque<br>slip characteristics, equivalent circuit and its phasor<br>diagram.                                                        | Cognitive<br>Psychomotor | Understanding<br>Mechanism |
| CO4         | To Understand the different typesof starting, braking and<br>speed control for induction motors. React the generator<br>operation, self-excitation and doubly-fed Induction<br>machines. | Cognitive<br>Psychomotor | Understanding<br>Mechanism |
| CO5         | To Understand the operation of single phase induction motors and its performance parameters.                                                                                             | Cognitive<br>Psychomotor | Understanding<br>Mechanism |

| SUB.CODE                                                                                                | SUB. NAME                                           | L      | Τ     | Р     | С |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------|-------|-------|---|--|--|--|--|
|                                                                                                         |                                                     | 3      | 0     | 2     | 4 |  |  |  |  |
| C:P:A = 3:0:0                                                                                           | L                                                   | Т      | Р     | Н     |   |  |  |  |  |
|                                                                                                         | 3                                                   | 0      | 2     | 5     |   |  |  |  |  |
| UNIT I FUNDAMENTALS OF AC MACHINE WINDINGS                                                              |                                                     |        |       |       |   |  |  |  |  |
| Physical arrangement of windings in stator and cylindrical rotor-Slots for windings -Single-turn coil - |                                                     |        |       |       |   |  |  |  |  |
| Active portion and overhang –Full-pitch coils–Types of windings– 3D visualization of the above winding  |                                                     |        |       |       |   |  |  |  |  |
| types- Air-gap MMF distribution                                                                         | on with fixed current through winding -Winding dist | ributi | on fa | ctor. |   |  |  |  |  |
| LIST OF EXPERIMENTS                                                                                     |                                                     |        |       |       |   |  |  |  |  |
| 1. Load test on three phase squin                                                                       | rrel cage induction motor.                          |        |       |       |   |  |  |  |  |
| 2. Load test on three phase slip                                                                        | ring induction motor.                               |        |       |       |   |  |  |  |  |
| 3. Load test of a three phase alternator.                                                               |                                                     |        |       |       |   |  |  |  |  |
| 4. Load test on single-phase induction motor.                                                           |                                                     |        |       |       |   |  |  |  |  |
| UNIT II PULSATING AND REVOLVING MAGNETIC FIELDS                                                         |                                                     |        |       |       |   |  |  |  |  |

#### UNIT II PULSATING AND REVOLVING MAGNETIC FIELDS

Types of magnetic fields –Alternating current in windings with spatial displacement – Magnetic field produced by a single winding – Fixed current and alternating current. Pulsating fields produced by spatially displaced windings– Windings spatially shifted by 90° – Three windings spatially shifted by 120° (carrying three-phase balanced currents) – Revolving magnetic field.

#### LIST OF EXPERIMENTS

5. No load and blocked rotor test on single phase induction motor.

6. No load and blocked rotor test on three phase induction motor.

#### UNIT III INDUCTION MACHINES

Constructional details - Types of rotors (squirrel cage and slip-ring) - Torque Slip Characteristics -Equivalent circuit - Phasor Diagram- Effect of parameter variation on torque speed characteristics -Methods of starting, braking and speed control for induction motors-Generator operation -Self-excitation-Doubly-Fed Induction Machines.

#### LIST OF EXPERIMENTS

7. Regulation of three phase alternator by EMF /MMF methods.

Board of studies in Electrical and Electronics Engineering (With effect from 26.6.2018 onwards) Page 57

12

| UNIT IV SINGLE PHASE INDUCTION MOTORS                                                                | 06      |
|------------------------------------------------------------------------------------------------------|---------|
| Constructional details of single phase induction motor – Double revolving field theory and operative | tion –  |
| Equivalent circuit – Determination of parameters – Split-phase starting methods and applications.    |         |
| LIST OF EXPERIMENTS                                                                                  |         |
| 8. OCC and load characteristics of three phase alternator.                                           |         |
| 9. V and inverted V curves of three phase synchronous motor.                                         |         |
| UNIT V SYNCHRONOUS MACHINES                                                                          | 09      |
| Constructional details - Cylindrical rotor synchronous machine- EMF equation -Equivalent cir         | rcuit – |
| Phasor diagram-Armature reaction-Voltage regulation-V-curves. Salient pole machine - Two re          | eaction |
| theory –Phasor diagram –Power angle characteristics. Synchronizing and parallel operation.           |         |
| (Basic operation of synchronous motors)                                                              |         |
| LIST OF EXPERIMENTS                                                                                  |         |
| 10 Study of induction motor starters                                                                 |         |

|                                                                                               | LECTURE            | TUTORIAL          | PRACTICAL         | TOTAL     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------|-------------------|-------------------|-----------|--|--|--|--|--|
|                                                                                               | 45                 | 0                 | 30                | 75        |  |  |  |  |  |
| TEXTBOOKS:                                                                                    |                    |                   |                   |           |  |  |  |  |  |
| 1. I. J. Nagrath and D. P. Kothari, 'Electr                                                   | ic Machines', Tata | a McGraw Hill Pu  | ublishing Company | y Ltd,    |  |  |  |  |  |
| 2010.                                                                                         |                    |                   |                   |           |  |  |  |  |  |
| 2. M. G. Say, 'Performance and Design of AC Machines', CBS Publishers, 2002.                  |                    |                   |                   |           |  |  |  |  |  |
| B. P. S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2011.                            |                    |                   |                   |           |  |  |  |  |  |
| B.L.Theraja, 'A Textbook of Electrical Technology', Vol. I & II, M/s S.Chand, Delhi, 2013.    |                    |                   |                   |           |  |  |  |  |  |
| REFERENCES:                                                                                   |                    |                   |                   |           |  |  |  |  |  |
| . A. E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill |                    |                   |                   |           |  |  |  |  |  |
| publishing Company Ltd, 2013.                                                                 |                    |                   |                   |           |  |  |  |  |  |
| 2. A. S. Langsdorf, 'Alternating Current l                                                    | Machines', Tata M  | IcGraw Hill publ  | ishing Company L  | td, 1984. |  |  |  |  |  |
| 3. P. C. Sen, "Principles of Electric Mach                                                    | ines and Power E   | lectronics", John | Wiley & Sons, 20  | 07.       |  |  |  |  |  |
| 4. J.B. Gupta, 'Theory and Performance of                                                     | of Electrical Mach | ines', S.K.Katari | a and Sons, 2002. |           |  |  |  |  |  |
| 5. DeshPande M.V., 'Electrical Machines                                                       | s', PHI Learning P | vt Ltd., New Del  | hi – 2011.        |           |  |  |  |  |  |
| 6. A. G. Warren, 'Problems in Electrical ]                                                    | Engineering', Parl | ker and Smith Sol | lutions, Newyork, | 1940.     |  |  |  |  |  |
| 7. K. Murugesh Kumar, 'Electric Machin                                                        | es', Vikas Publish | ning House Pvt La | td, 2002.         |           |  |  |  |  |  |
| 8. Department Laboratory Manual.                                                              |                    |                   |                   |           |  |  |  |  |  |
| E REFERENCES:                                                                                 |                    |                   |                   |           |  |  |  |  |  |
|                                                                                               | /0005/D · DI       | 1 1 1 1 1         | 25.20             |           |  |  |  |  |  |

1. <u>http://freevideolectures.com/Course/2335/Basic-Electrical-Technology35-38</u>, Prof. L. Umanand, IISc Bangalore.

#### COs VERSUS POs MAPPING

|       | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | <b>PS01</b> | PSO2 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|-------------|------|
| CO 1  | 3   | 2   | 2   | 2   | 1   | 0   | 0   | 0   | 0   | 0    | 0    | 2    | 2           | 1    |
| CO 2  | 3   | 2   | 2   | 2   | 1   | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 2           | 1    |
| CO 3  | 3   | 2   | 2   | 2   | 1   | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 1           | 1    |
| CO 4  | 2   | 2   | 1   | 3   | 2   | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 1           | 1    |
| CO 5  | 3   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 1           | 1    |
| Total | 14  | 8   | 7   | 9   | 6   | 0   | 0   | 0   | 0   | 0    | 0    | 6    | 7           | 5    |

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

#### SIGNALS AND SYSTEMS

| Course Ou  | tcomes                                                                | Domain    | Level       |
|------------|-----------------------------------------------------------------------|-----------|-------------|
| CO1        | Understand the concepts of continuous time and discrete time systems. | Cognitive | Understand  |
| CO2        | Analyse systems in complex frequency domain.                          | Cognitive | Analyse     |
| CO3        | Learn about Fourier transformation techniques                         | Cognitive | Remembering |
| <b>CO4</b> | Learn about Laplace transformation techniques                         | Cognitive | Remembering |
| CO5        | Learn about Z- transformation techniques                              | Cognitive | Remembering |

| SUB. CODE                                  | L                   | Т | Р | С |    |
|--------------------------------------------|---------------------|---|---|---|----|
|                                            |                     |   |   | 0 | 3  |
| C:P:A = 2:1:0                              | SIGNALS AND SYSTEMS | L | Т | Р | Η  |
|                                            |                     |   |   | 0 | 3  |
| UNIT I INTRODUCTION TO SIGNALS AND SYSTEMS |                     |   |   |   | 09 |

Signals and systems as seen in everyday life, and in various branches of engineering and science. Signal properties: periodicity, absolute integrability, determinism and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special timelimited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, reliability. Examples.

#### UNIT II BEHAVIOUR OF CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS

Impulse response and step response, convolution, input-output behaviour with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.

#### **UNIT III FOURIER TRANSFORMS**

Fourier series representation of periodic signals, Waveform Symmetries, Fourier Coefficients, harmonic spectrum and THD. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete- Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Application to simple circuits.

#### UNIT IV LAPLACE TRANSFORMS

Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behaviour. Application to simple circuits. 12

#### **UNIT V Z- TRANSFORMS AND SAMPLING RECONSTRUCTION**

The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis. The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 30      | 15       | 45    |

09

09

06

#### **TEXTBOOKS**

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and systems", Prentice Hall India, 1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms,

and Applications", Pearson, 2006.

- 3. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
- 4. S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.

#### REFERENCES

- 1. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 2. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

|       | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PEO1 | PEO2 |
|-------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| CO 1  | 3   | 2   | 2   | 2   | 1   |     |            |     | 1   |      |      | 1    | 1    | 0    |
| CO 2  | 3   | 3   | 2   | 1   |     | 3   |            | 1   |     |      |      | 2    |      | 1    |
| CO 3  | 3   |     |     | 1   |     | 3   |            | 1   |     |      | 1    |      |      | 1    |
| CO 4  | 3   | 2   | 2   | 2   | 1   |     | 1          |     |     | 2    |      | 2    |      | 1    |
| CO 5  | 3   |     |     | 1   |     |     |            |     |     | 2    |      |      |      | 1    |
| Total | 15  | 7   | 6   | 7   | 2   | 6   | 1          | 2   | 1   | 4    | 1    | 5    | 1    | 4    |

#### **COs VERSUS POs MAPPING**

0 –No relation 1 – Low relation 2 – Medium relation 3 – High

# SYLLABUS FOR ONE CREDIT (MINOR) COURSES

#### **ELECTRICAL SAFETY**

| COU        | RSE OUTCOMES                                                                 | DOMAIN    | LEVEL         |
|------------|------------------------------------------------------------------------------|-----------|---------------|
| <b>CO1</b> | Describe electrical hazards and safety equipment.                            | Cognitive | Understanding |
| CO2        | Analyze and apply various grounding and bonding techniques.                  | Cognitive | Applying      |
| CO3        | Select appropriate safety method for low, medium and high voltage equipment. | Cognitive | knowledge     |

| C:P:A = 3:0:0 | ELECTRICAL SAFETY | L | Т | Р | H |  |  |
|---------------|-------------------|---|---|---|---|--|--|
|               |                   | 1 | 0 | 0 | 1 |  |  |
| UNIT I        |                   |   |   |   |   |  |  |

Principals of electric safety - Electricity & Human body - Earthing / Grounding Risk assessment & management - Safety against over voltage, extra-low and residual voltages - Safe practices – RCD, PPE, CB, lockout/tag out -Hazardous areas, Electrical insulation - Electrical fires, Arc flash - Electrical safety in hospitals and Industries. Hazards of electricity - basic physics of electrical hazards - electrical safety equipment safety procedures and methods - grounding and bonding of electrical systems and equipment - electrical maintenance and its relationship to safety - regulatory and legal safety requirements and standards accident prevention, accident investigation, rescue, and first aid - medical aspects of electrical trauma - low-voltage, medium-and high-voltage safety synopsis Human factors in electrical safety.

|                                                                                             | LECTURE                                                                                  | TUTORIAL         | TOTAL              |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------|--------------------|--|--|--|--|--|
|                                                                                             | 15                                                                                       | 0                | 15                 |  |  |  |  |  |
| TEXT BOOKS                                                                                  |                                                                                          |                  |                    |  |  |  |  |  |
| 1. John Cadick, Mary Capelli-Schellpfeffer, Dennis Neitzel, Al Winfield, 'Electrical Safety |                                                                                          |                  |                    |  |  |  |  |  |
| Handbook', McGraw-Hill Education, 4thEdition                                                | , 2012.                                                                                  |                  |                    |  |  |  |  |  |
| <b>REFERENCE BOOKS</b>                                                                      |                                                                                          |                  |                    |  |  |  |  |  |
| 1. Maxwell Adams.J, 'Electrical Safety- a guide                                             | 1. Maxwell Adams.J, 'Electrical Safety- a guide to the causes and prevention of electric |                  |                    |  |  |  |  |  |
| hazards', The Institution of Electric Engineers, I                                          | ET 1994.                                                                                 |                  |                    |  |  |  |  |  |
| 2 Day A. Lawag, Lawag, C. Lawag, (Electrical Sofatoria                                      | the Westerles                                                                            | a' Isman & David | 1 att T a a main a |  |  |  |  |  |

2. Ray A. Jones, Jane G. Jones, 'Electrical Safety in the Workplace', Jones & Bartlett Learning, 2000.

#### MICROGRIDS

| COU        | RSE OUTCOMES                                           | DOMAIN    | LEVEL         |
|------------|--------------------------------------------------------|-----------|---------------|
| CO1        | Understand concept of microgrid and implementation     | Cognitive | Understanding |
|            | issues.                                                |           |               |
| CO2        | Understand issues related to power electronics         | Cognitive | Understanding |
|            | interface.                                             |           |               |
| <b>CO3</b> | Acquire knowledge about modelling and stability        | Cognitive | knowledge     |
|            | analysis of solving power quality issues in Microgrid. |           |               |

| SUB. CODE                                                                                   | SUB. N.                    | AME               |          | L      | Т      | Р     | С    |  |  |
|---------------------------------------------------------------------------------------------|----------------------------|-------------------|----------|--------|--------|-------|------|--|--|
|                                                                                             | MICROGRIDS                 |                   |          | 1      | 0      | 0     | 1    |  |  |
| <b>C:P:A = 3:0:0</b>                                                                        |                            |                   |          | L      | Т      | Р     | H    |  |  |
|                                                                                             |                            |                   |          | 1      | 0      | 0     | 1    |  |  |
| UNIT I MICROGRIDS                                                                           | AND THEIR POWER (          | <b>UALITY ISS</b> | UES      |        |        |       | 15   |  |  |
| Concept and definition of microgrid, review of sources of microgrids, typical structure and |                            |                   |          |        |        |       |      |  |  |
| configuration of a microgr                                                                  | rid: AC and DC microgrid   | s, Power Electr   | ronics i | nterfa | ces in | DC    | and  |  |  |
| AC microgrids, modes of                                                                     | f operation and control of | f microgrid: gr   | id com   | nected | and    | islan | ded  |  |  |
| mode, Power quality issu                                                                    | es in microgrids- Model    | ling and Stabil   | ity ana  | lysis  | of M   | icrog | rid, |  |  |
| regulatory standards, Micr                                                                  | ogrid economics.           |                   |          |        |        |       |      |  |  |
|                                                                                             |                            | LECTURE           | TUTC     | ORIA   | LT     | ОТА   | L    |  |  |
| 15 0 15                                                                                     |                            |                   |          |        |        |       |      |  |  |
| TEXT BOOKS                                                                                  |                            |                   |          |        |        |       |      |  |  |
| 1. John Twidell and Tony Weir, "Renewable Energy Resources" Tyalor and Francis              |                            |                   |          |        |        |       |      |  |  |

1. John Twidell and Tony Weir, "Renewable Energy Resources" Tyalor and Francis Publications, 2005.

2. S. Chowdhury, S. P. Chowdhury, P. Crossley, "Microgrids and Active Distribution."

#### **REFERENCE BOOKS**

1. Chetan Singh Solanki, "Solar Photo Voltaics", PHI learning Pvt. Ltd., New Delhi, 2009.

2. Freris,"Wind Energy Conversion System", Prentice Hall, 1990.

3. "Networks." Institution of Engineering and Technology, 30 Jun 2009.

#### PLC PROGRAMMING

| COURSE OUTCOMES |                                       | DOMAIN      | LEVEL         |
|-----------------|---------------------------------------|-------------|---------------|
| CO1             | Understanding about the basics of PLC | Cognitive   | Understanding |
| CO2             | Describe different problems in PLC    | Psychomotor | Perception    |

| SUB. CODE                                          | SUB. NA                                                                                                             | AME                |         | L      | Т      | Р       | С          |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------|---------|--------|--------|---------|------------|--|
|                                                    |                                                                                                                     |                    |         | 1      | 0      | 0       | 1          |  |
| C:P:A = 1:0:0                                      | PLC PROGR                                                                                                           | AMMING             |         | L      | Т      | Р       | Η          |  |
|                                                    |                                                                                                                     |                    |         | 1      | 0      | 0       | 1          |  |
| UNIT I INTRODUCTION                                | ON                                                                                                                  |                    |         |        |        |         | 6          |  |
| Definitions of PLC, basic                          | structure of PLC, working                                                                                           | g principles, data | storag  | ge me  | ethod  | s, inp  | uts /      |  |
| outputs flag processing's,                         | types of variables, defin                                                                                           | ition of firmware  | e, soft | ware   | , prog | gramn   | ning       |  |
| software tool and interfac                         | cing with PC (RS232 &                                                                                               | TCP-IP), metho     | ods of  | PLC    | prog   | gramn   | ning       |  |
| (LD, ST, FBD & SFC),                               | What is logic, Convent                                                                                              | ional Ladder v/s   | s PLC   | lado   | ler, s | eries   | and        |  |
| parallel function of OR, A                         | ND, NOT logic function                                                                                              | blocks logical / 1 | mathe   | matic  | al op  | erator  | rs &       |  |
| data types, array & data st                        | ructure.                                                                                                            |                    |         |        |        |         |            |  |
| <b>`UNIT I Lab Exercises</b>                       |                                                                                                                     |                    |         |        |        |         | 9          |  |
| 1. Draw and verify t                               | he ladder diagram for the                                                                                           | given problem      | using   | the l  | PLC:   | - Do    | uble       |  |
| acting Cylinder op                                 | eration using solenoid val                                                                                          | ves.               | U       |        |        |         |            |  |
| 2. Problems on OR 1                                | ogic ex: Stair case lighting                                                                                        | ng problems, Pro   | oblems  | s on A | AND    | logic   | ex:        |  |
| Pressing unit other                                | r relevant simple problem                                                                                           | s like Railway p   | latforr | n exa  | mple   | , flasl | hing       |  |
| of light, Burglar a                                | alarm, Selection committ                                                                                            | ee, Testing unit   | , Pres  | ssing  | unit   | prob    | lem,       |  |
| Drilling tool etc.                                 |                                                                                                                     |                    |         | U      |        | 1       | ŕ          |  |
| 3. Problems on Time                                | rs                                                                                                                  |                    |         |        |        |         |            |  |
|                                                    |                                                                                                                     | <b>LECTURE</b>     | ГИТО    | RIA    | L      | ΓΟΤΑ    | <b>۱</b> L |  |
|                                                    |                                                                                                                     | 15                 | (       | 0      |        | 15      | ,          |  |
| TEXT BOOKS                                         |                                                                                                                     |                    |         |        |        |         |            |  |
| 1. Programmable Log                                | gic Controllers by W.Bolt                                                                                           | on.                |         |        |        |         |            |  |
| 2. Programmable Log                                | gic Controllers and Indus                                                                                           | trial Automation   | : An I  | ntrod  | luctio | n Sec   | cond       |  |
| Edition by Madhuchhanda Mitra, Samarjit Sen Gupta. |                                                                                                                     |                    |         |        |        |         |            |  |
| <b>REFERENCE BOOKS</b>                             | v                                                                                                                   |                    |         |        |        |         |            |  |
| 1. Programmable L<br>(2003)by Hackwor              | REFERENCE BOOKS         1. Programmable Logic Controllers: Programming Methods and Applications, (2003)by Hackworth |                    |         |        |        |         |            |  |

#### **ENERGY AUDITING**

| COU | RSE OUTCOMES                                                                              | DOMAIN    | LEVEL         |
|-----|-------------------------------------------------------------------------------------------|-----------|---------------|
| CO1 | Understand the importance of energy auditing & energy management.                         | Cognitive | Understanding |
| CO2 | Apply their own ideas in optimizing the energy requirements to overcome the demand.       | Cognitive | Applying      |
| CO3 | Acquire knowledge about energy monitoring and targeting to improve the energy efficiency. | Cognitive | knowledge     |

| SUBCODE                                                                                    | SUB NAME        | L | Т | Р | С |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------|---|---|---|---|--|--|--|--|
|                                                                                            |                 | 1 | 0 | 0 | 1 |  |  |  |  |
| C:P:A = 1:0:0                                                                              | ENERGY AUDITING | L | Т | Р | Η |  |  |  |  |
|                                                                                            | 1               | 0 | 0 | 1 |   |  |  |  |  |
| UNIT I ENERGY MANAGEMENT & AUDIT 15                                                        |                 |   |   |   |   |  |  |  |  |
| Energy Scenario: energy needs of growing economy, energy pricing, energy sector reforms,   |                 |   |   |   |   |  |  |  |  |
| Re-structuring of the energy supply sector Energy Conservation Act-2001 and its features - |                 |   |   |   |   |  |  |  |  |

Re-structuring of the energy supply sector, Energy Conservation Act-2001 and its features -Need for energy audit - Energy management & audit approach: understanding energy ts, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, energy audit instruments. Energy Monitoring and Targeting: Defining monitoring & targeting, elements of monitoring & targeting, data and information-analysis, techniques energy consumption, production, cumulative sum of differences (CUSUM) - Energy Efficiency in Electrical Utilities: electrical load management and maximum demand control, power factor improvement, energy saving opportunities with energy efficient motors.

| 1 | , | 0, | <u> </u> | 11 | 0.      |          |       |  |
|---|---|----|----------|----|---------|----------|-------|--|
|   |   |    |          |    | LECTURE | TUTORIAL | TOTAL |  |
|   |   |    |          |    | 15      | 0        | 15    |  |
|   |   |    |          |    |         |          |       |  |

#### **TEXT BOOKS**

1. Energy Management Principles: C.B.Smith, Pergamon Press, 1981.

2. Industrial Energy Management and Utilization – L.C. Witte, P.S. Schmidt, D.R. Brown Hemisphere Publication, Washington, 1988.

#### **REFERENCE BOOKS**

1. Industrial Energy Conservation Manuals, MIT Press, Mass, 1982

- 2. Energy Conservation guide book Patrick/Patrick/ Fardo, Prentice hall, 1993.
- 3. Energy Management Handbook W.C. Turner, John Wiley and Sons, A Wiley Interscience publication, 1988.

#### PROGRAMMING WITH AURDINO

| COURSE OUTCOMES |                                     |     |             |         |      | Domain Level |           |               |
|-----------------|-------------------------------------|-----|-------------|---------|------|--------------|-----------|---------------|
| CO1             | Understand the basics of Audino kit |     |             |         |      |              | Cognitive | Understanding |
| CO2             | Applying interfaces                 | the | programming | concept | with | different    | Cognitive | Applying      |

| SUBCODE                                                                                 | SUB NAME                 | L | Т | Р | С  |  |
|-----------------------------------------------------------------------------------------|--------------------------|---|---|---|----|--|
|                                                                                         | PROGRAMMING WITH AURDINO | 1 | 0 | 0 | 1  |  |
| <b>C:P:A = 1:0:0</b>                                                                    |                          | L | Т | Р | Η  |  |
|                                                                                         |                          | 1 | 0 | 0 | 1  |  |
| UNIT I                                                                                  |                          |   |   |   | 15 |  |
| Arduino Basics - The Arduino platform - Block Diagram – Architecture, Basic programming |                          |   |   |   |    |  |

Arduno Basics - The Arduno platform - Block Diagram – Architecture. Basic programming essentials - Control structure - Functions - operators - Sketch Structure. Interfacing LED with Arduino. Interfacing 7-Segment display with Arduino. Interfacing LCD display with Arduino. Interfacing different sensors with Arduino

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 15      | 0        | 15    |  |
|         |          |       |  |

#### TEXT BOOKS

1. Exploring Arduino: Tools and Techniques for Engineering Wizardry 1st Edition by Jeremy Blum

2. Arduino: 101 Beginners Guide: How to get started with Your Arduino (Tips, Tricks, Projects and More!) by Erik Savasgard

#### **REFERENCE BOOKS**

1. Arduino Workshop: A Hands-On Introduction with 65 Projects 1st Edition by John Boxall